DOI QR코드

DOI QR Code

Computational Analysis of the Delta Wing-Cylindrical Body Configuration Using the Three-Dimensional Patched-Grid Algorithm

3차원 patched-grid 알고리즘을 이용한 삼각 날개-원통형 동체 형상 전산 해석

  • Park, Hyeon Don (Department of Aerospace Information Engineering, Konkuk University) ;
  • Kim, Young Jin (Department of Aerospace Information Engineering, Konkuk University) ;
  • Park, Soo Hyung (Department of Aerospace Information Engineering, Konkuk University)
  • Received : 2019.11.25
  • Accepted : 2020.01.27
  • Published : 2020.02.01

Abstract

A structured grid system can be efficiently constructed by applying the patched-grid algorithm that alleviates many constraints of the conventional structured grid system. Three approaches were applied to case 4 of the EFD-CFD workshop: delta wing-cylindrical body shape to solve the existing grid generation problems and verify the results by comparing them with experimental data. Surface pressure distributions slightly differed from the experimental data at high angles of attack. The slope variation of the pitching moment with Mach number is analyzed and the variation can be explained with the tuck under phenomenon. In the supersonic region, the bow shock waves in front of the shape expand the region generating lift up to the rear of the configuration. Also, the tendency of the pitching moment with both Mach number and angle of attack was analyzed by comparing the positions of the center of pressure and the center of gravity.

기존 정렬 격자의 많은 제약 조건들을 완화할 수 있는 patched-grid 알고리즘을 이용하여 효율적으로 정렬 격자계를 구성하였다. EFD-CFD 워크숍의 case 4: 삼각 날개-원통형 동체 형상에 크게 3가지의 접근 방식을 적용하여 기존의 격자 생성 문제점들을 해결하였고, 실험값과 비교하여 검증하였다. 고 받음각 영역에서 표면 압력 분포가 실험값과 다소 차이를 보였다. 마하수의 증가에 따른 피칭 모멘트의 기울기 변화를 분석하였고 이는 tuck under 현상으로 설명할 수 있었다. 초음속 영역에서는 형상 앞에 궁형 충격파가 발생함으로써 삼각익 뒷전까지 양력을 발생시키는 영역이 확장되었다. 또한, 마하수와 받음각에 따라 압력 중심과 무게 중심의 위치를 비교하여 피칭 모멘트의 경향성을 분석하였다.

Keywords

References

  1. Levy, D. W., Laflin, K. R., Tinoco, E. N., Vassberg, J. C., Mani, M., Rider, B., Rumsey, C. L., Wahls, R. A., Morrison, J. H., Brodersen, O. P., Crippa, S., Mavriplis, D. J., and Murayama, M., "Summary of Data from the Fifth Computational Fluid Dynamics Drag Prediction Workshop," Journal of Aircraft, Vol. 51, No. 4, 2014, pp. 1194-1213. https://doi.org/10.2514/1.C032389
  2. Rumsey, C. L., Slotnick, J. P., Long, M., Stuever, R. A., and Wayman, T. R., "Summary of the First AIAA CFD High-Lift Prediction Workshop," Journal of Aircraft, Vol. 48, No, 6, 2011, pp. 2068-2079. https://doi.org/10.2514/1.C031447
  3. Kim, C., "The Objectives of EFD-CFD Comparison Workshop and Future Plan," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 45, No. 3, 2017, pp. 191-193. https://doi.org/10.5139/JKSAS.2017.45.3.191
  4. Seo, K., Cho, C. Y., Choi, E. H., Kim, H. J., and Ma, S., "6-DOF Aerodynamic Coefficients for Euler Model Measured in ADD Trisonic Wind Tunnel," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, 2018, p. 23.
  5. Jeong, K., Jung, E., Kang, D. G., Lee, D., and Kim, D., "Grid Dependency and Aerodynamic Analysis for Transonic Flow of Delta Wing using CFD," The Korean Society for Aeronautical and Space Sciences, Vol. 46, No. 6, 2018, pp. 445-451. https://doi.org/10.5139/JKSAS.2018.46.6.445
  6. Son, M. S., Sa, J. H., Park, S. H., and Byun, Y. H., "Numerical Analysis of Pressure Perturbation of Delta Wing Vortex Flow at a High Angle of Attack," Journal of Computational Fluids Engineering, Vol. 20, No. 2, 2015, pp. 73-80. https://doi.org/10.6112/kscfe.2015.20.2.073
  7. Agrawal, S., Barnett, R. M., and Robinson, B. A., "Numerical Investigation of Vortex Breakdown on a Delta Wing," AIAA Journal, Vol. 30, No. 3, 1992, pp. 584-591. https://doi.org/10.2514/3.10960
  8. Rai, M. M., "A Conservative Treatment of Zonal Boundaries for Euler Equation Calculations," Journal of Computational Physics, Vol. 62, No. 2, 1986, pp. 472-503. https://doi.org/10.1016/0021-9991(86)90141-5
  9. Rai, M. M., "A Relaxation Approach to Patched-Grid Calculations With the Euler Equations," Journal of Computational Physics, Vol. 66, No. 1, 1986, pp. 99-131. https://doi.org/10.1016/0021-9991(86)90056-2
  10. Thomas, J. L., Walters, R. W., Reu, T., Ghaffari, F., Weston, R. P., and Luckring, J. M., "A Patched-Grid Algorithm for Complex Configurations Directed Towards the F-18 Aircraft," 27th Aerospace Sciences Meeting, 1989, p. 0121.
  11. Cheng, J., and Shu, C. W., "A High Order Accurate Conservative Remapping method on Staggered Meshes," Applied Numerical Mathematics, Vol. 58, No. 7, 2008, pp. 1042-1060. https://doi.org/10.1016/j.apnum.2007.04.015
  12. Harten, A., Engquist, B., Osher, S., and Chakravarthy, S. R., "Uniformly High Order Accurate Essentially Non-Oscillatory Schemes, III," Journal of Computational Physics, Vol. 71, No. 2, 1987, pp. 231-303. https://doi.org/10.1016/0021-9991(87)90031-3
  13. Shu, C. W., "High-Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems," SIAM Review, Vol. 51, No. 1, 2009, pp. 82-126. https://doi.org/10.1137/070679065
  14. Park, S. H., and Kwon, J. H., "Implementation of $k-{\omega}$ Turbulence Models in an Implicit Multigrid Method," AIAA Journal, Vol. 42, No. 7, 2004, pp. 1348-1357. https://doi.org/10.2514/1.2461
  15. Rappoport, A., "An Efficient Algorithm for Line and Polygon Clipping," The Visual Computer, Vol. 7, No. 1, 1991, pp. 19-28. https://doi.org/10.1007/BF01994114
  16. Liang, Y. D., and Barsky, B. A., "An Analysis and Algorithm for Polygon Clipping," Communications of the ACM, Vol. 26, No. 11, 1983, pp. 868-877. https://doi.org/10.1145/182.358439
  17. Park, H. D., and Park, S. H., "Enhancement of 3-D Structured Grid Generation Using an Efficient Patched-Grid Algorithm," Journal of Computational Fluids Engineering Vol. 24, No. 2, 2019, pp. 23-31. https://doi.org/10.6112/kscfe.2019.24.2.023
  18. Mitchell, A. M., Morton, S. A., Forsythe, J. R., and Cummings, R. M., "Analysis of Delta-Wing Vortical Substructures Using Detached-Eddy Simulation," AIAA Journal, Vol. 44, No. 5, 2006, pp. 964-972. https://doi.org/10.2514/1.755
  19. Morton, S., "High Reynolds Number DES Simulations of Vortex Breakdown over a 70 Degree Delta Wing," 21st AIAA Applied Aerodynamics Conference, 2003, p. 4217.
  20. Parker, R. H., and Templeman, J. E., "Boeing/Sperry Automatic Landing System 727 Airplane," Journal of Aircraft, Vol. 5, No. 3, 1968, pp. 285-291. https://doi.org/10.2514/3.43940