DOI QR코드

DOI QR Code

Supersonic Multi-species Jet Interactions of Hit-to-Kill Interceptor with High Temperature Effect

고온효과를 고려한 직격 요격체 다화학종 초음속 제트 간섭

  • Baek, Chung (Department of Aerospace Engineering, Inha university) ;
  • Lee, Seungsoo (Department of Aerospace Engineering, Inha university) ;
  • Huh, Jinbum (Defense Agency for Technology and Quality)
  • Received : 2019.11.29
  • Accepted : 2020.02.25
  • Published : 2020.03.01

Abstract

In this study, computational analyses are carried out to investigate the interference flows and the aerodynamic characteristics of a hit-to-kill intercepter due to lateral jets at medium altitude. In addition, the analyses are performed for air and multi-species gas used in the side jet. The results indicate that the position of the barrel shock are shifted upstream and the structure of the shock wave are changed for the multi-species jet when compared to the air jet. As a result, the high pressure region with multi-species jet moves forward and the pitching moment is higher under the same flow condition. Moreover, the inclusion of high temperature effects makes drastic changes in pressure distribution. The jet width is much bigger, and the jet diffuses over wider range in medium altitude than in low altitude, because of the low density of the freestream.

본 연구에서는 고도에 따른 간섭 유동과 공력특성을 파악하고, 측추력 제트에 사용된 기체의 종류에 따라 다화학종 가스제트의 확산을 고려한 유동해석을 수행하였다. 공기제트에 비해서 임의로 가정한 다화학종 가스 제트를 사용하는 경우 충격파의 위치와 제트의 확산 영역이 동체전방으로 이동한다. 이로 인해 표면의 고압영역이 앞으로 나가며 같은 조건에서 보다 높은 피칭 모멘트를 갖는다. 또한 고온효과의 적용에 따라 압력분포 예측에 차이를 보였다. 그리고 저고도의 측추력제트 유동 구조와 비교했을 때 중고도 유동조건에서 주변 대기의 낮은 밀도로 측추력 제트의 두께가 더 크며, 넓은 영역에 걸쳐 확산된다.

Keywords

References

  1. Ebrahimi, H. B., "Numerical Investigation of Jet Interaction in a Supersonic Freestream," Journal of Spacecraft and Rockets, Vol. 45, No. 1, 2008, pp. 95-103. https://doi.org/10.2514/1.29847
  2. Viti, V., Neel, R., and Schetz, J. A., "Detailed Flow Physics of the Supersonic Jet Interaction Flow field," Physics of Fluids, Vol. 21, No. 4, 2009.
  3. Wallis, S. E., Innovative Transverse Jet Interaction Arrangements in Supersonic Crossflow, M.S. Thesis, Aerospace Engineering Dept., Virginia Tech, Blacksburg, VA, 2001.
  4. Huh, J., and Lee, S., "Numerical Study on Lateral Jet Interaction in Supersonic Crossflows," Aerospace Science and Technology, Vol. 80, 2018. pp. 315-328. https://doi.org/10.1016/j.ast.2018.07.022
  5. Huh, J., and Lee, S., "Numerical Analysis of Jet Interaction with Diffusion at Supersonic Flow Field," Proceeding of the Korean Society for Computational Fluids Engineering Spring conference, 2017, pp. 12-13.
  6. Stahl, B., Emunds, H., and Gülhan, A., "Experimental Investigation of Hot and Cold Side Jet Interaction with a Supersonic Cross-Flow," Aerospace Science and Technology, Vol. 13, No. 8, 2009, pp. 488-496. https://doi.org/10.1016/j.ast.2009.08.002
  7. Choi, K., Lee, S., Oh, K., and Kim, C., "Jet Interaction Flow Analysis of Lateral Jet Controlled Interceptor Operating at Medium Altitude," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 46, No. 12, 2018, pp. 986-993. https://doi.org/10.5139/JKSAS.2018.46.12.986
  8. Kee, R. J., Rupley, F. M., Miller, J. A., Coltrin, M. E., Grcar, J. F., Meeks, E., Moffat, H. K., Lutz, A. E., Dixon-Lewis, G., Smooke, M. D., Warnatz, J., Evans, G. H., Larson, R. S., Mitchell, R. E., Petzold, L. R.. Reynolds, W. C., Caracotsios, M., Stewart, W. E., Glarborg, P., Wang, C., and Adigun, O., "CHEMKIN collection," Release 3.6, Reaction Design, Inc., San Diego, CA, 2000.
  9. Bowman, C. T., Hanson, R. K., Davidson, D. F., Gardiner Jr., W. C., Lissianski, V., Smith, G. P., Golden, D. M., Frenklach, M., and Goldenberg, M., "GRI-Mech," Accessed Sep, 4, 2019. http://combust ion.berkeley.edu/gri-mech/
  10. Roe, P. L., "Approximate Riemann solvers, parameter vectors, and difference schemes," Journal of Computational Physics, Vol. 43, No. 2, 1981, pp. 357-372. https://doi.org/10.1016/0021-9991(81)90128-5
  11. Vinokur, M., "Flux Jacobian Matrices and Generalized Roe Average for an Equilibrium Real Gas," NASA Contractor Report 177512, 1988.
  12. Sanders, R., Morano, E., and Druguet, M. C., "Multidimensional Dissipation for Upwind Schemes: Stability and Applications to Gas Dynamics," Journal of Computational Physics, Vol. 145, No. 2, 1998, pp. 511-537. https://doi.org/10.1006/jcph.1998.6047
  13. Dong, H., Liu, J., Chen, Z., and Zhang, F., "Numerical investigation of lateral jet with supersonic reacting flow," Journal of Spacecraft and Rockets, Vol. 55, No. 4, 2018, pp. 928-935. https://doi.org/10.2514/1.A34096