• Title/Summary/Keyword: 초기 처짐

Search Result 95, Processing Time 0.026 seconds

Flexural Failure Behaviour of RC Beams Strengthened by CFS according to Loading Condition (CFS로 보강된 RC보의 가력상태에 따른 휨파괴 거동)

  • Park, Sung-Soo;Cho, Su-Je
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.223-230
    • /
    • 2003
  • The purpose of this research are to investigate experimentally flexural strengthening effects and flexural behaviour of RC beams strengthened by carbon fiber sheet(CFS) with/without superimposed pre-load. Test parameters of experiment are tension reinforcement ratio(0.85, 1.32, 1.91%) and pre-load(80% of yield capacity of unstrengthened beams). The structural behaviour of strengthened beams are compared with in terms of yield load and ultimate load, load-deflection relation, ductility, strengthened efficiency. From the test results, it were shown that ultimate capacity and flexural failure behaviour of RC beams strengthened by CFS changed by initial stresses between original beams and bonded CFS.

An Elastic Parabolic Cable Element for Initial Shaping Analysis of Cable-Stayed Bridges (사장교의 초기형상해석을 위한 탄성포물선 케이블요소)

  • Kyung, Yong-Soo;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • This study introduces an elastic parabolic cable element for initial shaping analysis of cable-stayed bridges. First, an elastic catenary cable theory is shortly summarized by deriving the compatibility condition and the tangent stiffness matrices of the elastic catenary cable element. Next, the force-deformation relations and the tangent stiffness matrices of the elastic parabolic cable elements are derived from the assumption that sag configuration under self-weights is small. In addition the equivalent cable tension is defined in the chord-wise direction. Finally, to confirm the accuracy of this element, initial shaping analysis of cable-stayed bridges under dead loads is executed using TCUD in which stay cables are modeled by an elastic parabolic cable and an elastic catenary cable element, respectively. Resultantly it turns that unstrained lengths of stay cables, the equivalent cable tensions, and maximum tensions by the parabolic cable element are nearly the same as those by the catenary cable elements.

Stiffness Test of Dowel Bar for fainted Concrete Pavement (콘크리트 포장의 다웰바 전단거동 실험)

  • Yang, Sung-Chul;Choi, Jae-Gon
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.81-89
    • /
    • 2008
  • Shear test procedure for concrete-dowel interaction was proposed along with determination of dowel support reaction factor or shear spring stiffness constant using the spreadsheet example. For this task, three AASHTO-type standard specimens were prepared to simulate behavior of the jointed concrete pavement. A side support system was adopted to minimize twisting of the test specimen which had been observed in a preliminary test. A typical elastic behavior of the dowel-concrete interaction was observed from several test loops of loading, unloading and reloading procedures. However load versus slab displacement represents to be nonlinear. Test results show that the dowel support reaction factor ranges from 550-880 GN/m3, which is 1.4-2.2 times greater than 407GN/m3 proposed by Yoder and Witczak. This is because less torsional distraction was occurred with the help of a side support system adopted in this experiment. The dowel support reaction factor or shear spring stiffness constant obtained from the procedures proposed in this paper may be used as a reference data for the structural analysis of jointed concrete pavement.

  • PDF

Study on the Cable Wall System Applied to Reinforced Concrete Exterior (철근콘크리트구조 외장재에 케이블월 시스템 적용에 관한 연구)

  • Park, Hyun-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.579-585
    • /
    • 2017
  • Development of a facade system that can reduce load factor and costs in high-rise building construction is required. The proposed cable wall system is used as a structural support by the glass-cable and can increase openness on lower elevations and the lobby area. Its use in high-rise buildings can reduce construction costs. Without transferring directly a strong initial tension of the cable to the building frame is connected to the steel member and the reinforced concrete structures, by absorbing the initial tension of the cable, it is possible to control the occurrence of a strong concentrated loads to the structure. Comparison of load-displacement test results from the numerical analysis with the test results showed reasonable agreement, Therefore, the proposed numerical results confirm good prediction of cable behavior for the facade system.

Flexural Fatigue Bechavior of Steel Fiber Reinforced Concrete Structures (강섬유보강 콘크리트의 휨 피로거동에 관한 연구)

  • 장동일;채원규;손영현
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.1
    • /
    • pp.81-87
    • /
    • 1992
  • In this thesis, the fatigue tests were performed on a series of SFRC(steel fiber reinforced concrete) to investigate the fatigue behavior of SFRC varying with the steel fiber contents and the steel fiber aspect ratios. The three point loading system is used in the fatigue tests. In tl1ese tests, relations between the repeated loading cycles and the mid-span deflections, number of repeated loadmg cycles when specimen was fractured were observed. On this basis, the mid-span deflections, the elastic strain energy and inelastic strain energy of SFRC were studied. A S - N curve \vas drawn to present the fatigue strength of SFRC beam. From che test results, by increasing the steel fiber content the energy lost on the permanent deformation decreases and the energy spent on crack growth increases. But in case of SFRC with the same steel fiber content the higher the steel fiber aspect ratio is, the less the elastic strain energy is. According to S - N curve drawn by the regression analysis on the fatugue test results, the fatigue strength with 2,000,000 repeated loading cycles in SFRC with the steel fiber content is 1.0% shows about 70% on the first crack static flexural strength.

An Assessment on the Ultimate Strength of Welding Joint by the Effect of External Force (外力의 效果를 고려한 熔接部의 最終强度에 대한 評價)

  • Bang, Han-Seo;Cha, Yong-Hun;O, U-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.20-29
    • /
    • 1995
  • When structures are constructed by welding, structural elements are always accompained by welding residual stress and deformation. Therefore, when the rigidity and strength of the welded structures is considered, it is very important to have sufficient information about the effect of initial deflection and welding residual stress on them. In this paper, the square plates with welding residual stress under compression are dealt with; First, heat conduction and thermal elastic-plastic problems are analyzed by finite element method using 4-node isoparametric elements for assessment on the ultimate strength of welding joint. Later, the ultimate strength of welding joint is assessed by examining the effect of changed type of loading. The specimens are 500{\times}$500mm(a/b=1) and 750{\times}$500mm(a/b=1.5) rectangular plates of whichthicknesses is 9.0mm and simply supported plates getting axiul load in each direction.

  • PDF

The Development Characteristic of Modulus of Elasticity in High Early Strength Concrete Considering Early Deflection( I ) (초기 처짐현상을 고려한 조강형 콘크리트의 탄성계수 발현 특성 연구( I ))

  • Lee, Woong-Jong;Um, Tai-Sun;Lee, Jong-Ryul;Hong, Geon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.317-318
    • /
    • 2009
  • In this study, The development characteristic of Modulus of Elasticity required to considering large deflection due to early the removal of forms for the reduction of working period of concrete is investigated. As a result of this study, it is found that the high early strength concrete is advantageous to compare with plain concrete on the early deflection.

  • PDF

Shear Damage Behavior of Reinforced Concrete Beams under Fatigue Loads (반복하중을 받는 철근콘크리트보의 전단피로손상거동)

  • 오병환;한승환;이형준;김지상;신호상
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.1
    • /
    • pp.143-151
    • /
    • 1998
  • 최근들어 반복하중에 의한 철근콘크리트 구조물의 손상이 자주 발견되고 있으며 교량 등의 구조물 등은 때때로 과적차량에 의한 초과하중을 받아 이러한 피로손상이 심화되고 있다. 본 연구에서는 이러한 반복 하중을 받는 철근 콘크리트보의 누적피로손상에 대한 실험적 연구룰 수행하여 피로하중에 의한 철근콘크리트보의 손상과정을 규명하였다. 실험 변수를 전단철근의 양과 반복되는 하중의 크기 및 반복횟수로 하여 실험부재를 제작하였으며, 하중제어에 의한 휨시험법에 의해 3Hz의 반복하중을 시편에 재하하였다. 사인장 균열하중과 사인장 균열 후 반복하중에서의 보의 손상누적거동 즉 처짐. 전단철근의 변형도, 에너지 손실 등의 변화를 실험적으로 평가하였으며, 이를 통하여 반복하중에 의한 누적손상에 의해 철근 콘크리트보의처짐 및 전단변형도가 초기하중상태에서는 급격히 증가하다가 이후 점진적으로 증가하는 것을 규명하였다. 본 연구의 결과는 사용하중상태에서 점진적으로 발생할 수 있는 피로손상의 누적과정을 기술하여 주고 있다.

Deflection Analysis of Flexural Composite Members Considering Early-Age Concrete Properties (콘크리트의 초기재령특성을 고려한 합성형 휨 부재의 재령종속적 처짐해석)

  • 성원진;김정현;윤성욱;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.427-432
    • /
    • 2003
  • An analytical method to predict the flexural behavior of composite girder is presented in which the early-age properties of concrete are specified including maturing of elastic modulus, creep and shrinkage. The time dependent constitutive relation accounting for the early-age concrete properties is derived in an incremental format by expanding the total form of stress-strain relation by the first order Taylor series with respect to the reference time. The sectional analysis calculates the axial and curvature strains based on the force and moment equilibriums. The deflection curve of the box girder approximated by the quadratic polynomial function is calculated by applying to the proper boundary conditions in the consecutive segments. Numerical applications are made for the 3-span double composite steel box girders which is a composite bridge girder filled with concrete at the bottom of the steel box in the negative moment region. The one dimensional finite element analysis results are compared with those of the three dimensional finite element analysis and the analytical method based on the sectional analysis. Close agreement is observed among the three methods.

  • PDF

Comparison Study of Elastic Catenary and Elastic Parabolic Cable Elements (탄성현수선 및 탄성 포물선 케이블 요소의 비교연구)

  • Kim, Dong-Yeong;Song, Yo-Han;Kim, Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.224-227
    • /
    • 2011
  • 케이블구조의 기하학적 비선형해석을 위한 탄성포물선 케이블요소를 제시한다. 탄성현수선 케이블요소에 대한 적합조건과 접선강도행렬을 토대로 장력이 충분히 도입되어 자중에 의한 처짐 형상이 포물선에 가깝다는 가정 하에서 무응력길이를 포함하는 탄성포물선 케이블요소의 비선형 힘-변형관계식과 접선강도 행렬을 구한다. 또한 현(chord)방향으로 두 케이블요소의 등가 공칭장력식을 정의한다. 탄성포물선 케이블 요소의 수치적인 정확성을 확인하기 위하여, 경사진 케이블을 탄성현수선과 탄성포물선 케이블요소로 각각 모델링하여 매개변수 해석을 수행하고 비교, 분석한 결과를 제시한다.

  • PDF