• Title/Summary/Keyword: 초기 강성

Search Result 547, Processing Time 0.022 seconds

Seismic Performance of Precast Beam-Column Joints with Thru-Connectors (관통형 연결재로 연결된 PC 보-기둥 맞댐 접합의 내진성능에 관한 실험적 연구)

  • Park, Soon-Kyu;Kim, Min-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.441-450
    • /
    • 2010
  • This is a preliminary study on the development of precast beam-column joints for dry construction methodology. Precast beam column joints with thru-connectors (BCJ_TC) using high strength bars or PS strands were developed and their seismic performance including strength degradation, stiffness degradation and energy dissipation capacity was experimentally evaluated. Test results showed that compressive failures at the end blocks of PC beam members occurred dominantly while PC columns including panel zones were free from any damage. However, the connections confined with CFRP at the end block showed much improved seismic performance than that of the unconfined connections. Connections with neoprene pad fillers between beam and column interfaces were better than the other connections in all the seismic performances except initial stiffness. To improve the seismic performances of BCJ_TC, compressive strength of the concrete at the end block need to be increased to compensate for the additional compressive stresses due to unbonded connectors and deformation of connectors should be controlled respectively.

Inelastic Behavior of Reinforced Concrete Frame Structure with Shear Strength of Masonry Wall (조적벽의 전단강도를 고려한 철근콘크리트골조의 비탄성 거동)

  • Yoon, Tae-Ho;Kang, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4216-4222
    • /
    • 2011
  • In this study the inelastic behavior of the existing school buildings with infilled masonry walls is analysed by pushover method. The shear stiffness and strength of masonry wall is calculated from the prior experimets and verified by inelastic analysis. The height of infilled masonry wall affects the structural behavior. The higher the masonry wall height, the higher the initial shear stiffness and strength of masonry wall. As the cracks are developed, the strength of masonry wall is much decreased. The proposed inelastic analysis method shows similar results with the experiments and can be used as inelastic analysis model of reinforced concrete buildings with infilled masonry walls.

Evaluation of Soil Stiffness and Excavation Support Wall Deformation at Deep Excavation Site Using Inverse Analysis (역해석을 이용한 지반 강성 산정 및 굴착 지지벽체의 변형 평가)

  • Kim, Taesik;Jung, Young-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.12
    • /
    • pp.5-10
    • /
    • 2020
  • In this study, the evolution of soil engineering property values according to excavation was analyzed through the inverse analysis for the OO deep excavation site located in Incheon. The stiffness of the ground was updated by comparing the horizontal wall deformation of the excavation support wall calculated by the finite element analysis at each stage of excavation and the value measured using an inclinometer. The updated stiffness was used to predict the response of the excavation support wall in the next excavation step. The finite element analysis method using the Hardening Soil model was used, and the stratum where the excavation support wall is located was selected as the stratum for the inverse analysis. The inverse analysis results showed that the stiffness value at the stiffness value at the initial stage of excavation is larger than the stiffness used in the original design. As the excavation proceeds, the stiffness calculated through the second inverse analysis was found to decrease compared to the value derived by the first inverse analysis. Therefore, it can be stated that the deformation of the excavation support wall can be accurately calculated through finite element analysis when an appropriate stiffness value is input according to the excavation stage.

Non-Liner Analysis of Shear Beam Model using Mode Superposition (모드중첩법을 이용한 전단보 모델의 비선형 해석)

  • 김원종;홍성목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.87-96
    • /
    • 1999
  • To analyze the dynamic behavior of structure, direct integration and mode superposition may be utilized in time domain analysis. As finite number of frequencies can give relatively exact solutions, mode superposition is preferable in analyzing structural behavior. In non-linear analysis, however, mode superposition is seldom used since time-varying element stiffness changes stiffness matrix, and the change of stiffness matrix leads to the change of essential constants - natural frequencies and mode shapes. In spite of these difficulties, there are some attempts to adopt mode superposition because of low cost compared to direct integration, but the result is not satisfactory. In this paper, a method using mode superposition in non-linear analysis is presented by separating local element stiffness from global stiffness matrix with the difference between linear and non-linear restoring forces to the external force vectors included. Moreover, the hysteresis model changing with the relative deformation in each floor makes it possible to analyze non-linear behavior of structure. The proposed algorithm is applied to shear beam model and the maximum displacement is compared with the result using direct integration method.

  • PDF

Drift Design Method of Steel Moment Frames by using Column-Beam Strength Ratios and Unit-Load Method (기둥-보 휨강도비와 단위하중법을 이용한 철골모멘트골조의 강성설계기법)

  • Oh, Byung-Kwan;Park, Hyo-Seon;Choi, Se-Woon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.563-569
    • /
    • 2016
  • This paper presents the resizing method of columns and beams that considers column-to-beam strength ratios to simultaneously control the initial stiffness and ductility of steel moment frames. The proposed method minimizes the top-floor displacement of a structure while satisfying the constraint conditions with respect to the total structural weight and column-to-beam strength ratios. The design variable considered in this method is the sectional area of structural members, and the sequential quadratic programming(SQP) technique is used to obtain optimal results from the problem formulation. The unit load method is applied to determine the displacement participation factor of each member for the top floor lateral displacement; based on this, the sectional area of each member undergoes a resizing process to minimize the top-floor lateral displacement. Resizing members by using the displacement participation factor of each member leads to increasing the initial stiffness of the structure. Additionally, the proposed method enables the ductility control of a structure by adjusting the column-to-beam strength ratio. The applicability of the proposed optimal drift design method is validated by applying it to the steel moment frame example. As a result, it is confirmed that the initial stiffness and ductility could be controlled by the proposed method without the repetitive structural analysis and the increment of structural weights.

Prediction Model for the Initial Rotational Stiffness of a Double Split T Connection (상·하부 스플릿 T 접합부의 초기회전강성 예측모델)

  • Yang, Jae-Guen;Kim, Yun;Park, Jae-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.279-287
    • /
    • 2012
  • A double split tee connection is used as a connection that is suitable for ordinary moment frames or special moment frames according to the combination of variables of the thickness of the T-stub flange and the gauge distance of the high-strength bolts. In order to demonstrate safe structural behavior, a double split tee connection must meet the requirements for inter-story drift angles and the moment of connection, as defined in the Korea Building Code-Structural. In order to determine whether the these requirements are met, it is necessary to predict rotational stiffness and the ultimate plastic moment of the connection. Therefore, this study primarily aimed to propose an analytical model for predicting the rotational stiffness of a double split tee connection under a static load. Toward this end, a three-dimensional, non-linear finite element analysis was carried out. Then, the applicability of the proposed model was verified after comparing the test results of this study with other studies.

New Nonlinear Analysis Algorithm Using Equivalent Load for Stiffness (강성등가하중을 이용한 새로운 비선형해석 알고리즘)

  • Kim, Yeong-Min;Kim, Chee-Kyeong;Kim, Tae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.731-742
    • /
    • 2007
  • This paper presents a new nonlinear analysis algorithm, that is, adaptive Newton-Raphson iteration method, The presented algorithm is based on the existing Newton-Raphson method, and the concept of it can be summarized as calculating the equivalent load for stiffness(ELS) and adapting this to the initial global stiffness matrix which has already been calculated and saved in initial analysis and finally calculating the correction displacements for the nonlinear analysis, The key characteristics of the proposed algorithm is that it calculates the inverse matrix of the global stiffness matrix only once irresponsive of the number of load steps. The efficiency of the proposed algorithm depends on the ratio of the active Dofs - the Dofs which are directly connected to the members of which the element stiffness are changed - to the total Dofs, and based on this ratio by using the proposed algorithm as a complementary method to the existing algorithm the efficiency of the nonlinear analysis can be improved dramatically.

Dynamic Analysis of Guyed Tower Subjected to Wave Forces (파랑하중에 대한 Guyed Tower의 동적해석)

  • Ryu, Jung Sun;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.87-94
    • /
    • 1985
  • Dynamic analysis of guyed tower is presented in this paper. The scope of the study is twofold. The one is to determine an efficient analysis method to include the nonlinearity of the mooring system and the nonlinear hydrodynamic wave forces. The other is to investigate the sensitivity of two major design parameters, that is the stiffness of mooring system and the fixity condition of the tower at mud line. Time history analysis method utilizing mode superposition is mainly considered. However several other methods are also used for the purpose of comparison. Analyses are carried out using the Lena Guyed Tower, which is the first structure of this kind, as a standard structure.

  • PDF

Secant Stiffness for Direct Inelastic Earthquake Design of Reinforced Concrete Structures (철근콘크리트 구조물의 직접비탄성 내진설계를 위한 할선강성)

  • Eom, Tae-Sung;Kim, Jae-Yo;Park, Hong-Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.59-68
    • /
    • 2009
  • For safe and economical design to provide strong earthquake resistance, the moment redistribution and plastic rotation of structures and their members needs to be evaluated. To achieve this, an earthquake design method was developed using secant stiffness analysis. To address the variation of member stiffness due to plastic rotation and moment redistribution, a structure was modeled with a beam-column element with non-rigid end connections (NREC element). Secant stiffness for the NREC element was determined based on the ductility demands of the structure and members. By performing a conventional linear analysis for the secant stiffness model, redistributed moments and plastic rotations of the members were computed. The proposed method was applied to a moment frame and two dual systems. The design results were verified using detailed nonlinear analyses.

Degradation Characteristics of Symmetric Unbraced Steel Frames According to Variations of Member Stiffness and Axial ratio (축력비 및 부재강성에 따른 강구조 대칭형 비가새 골조의 열화특성)

  • Lee, Myung-Jae;Kim, Hee-Dong;Lim, Yoo-Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.327-335
    • /
    • 2011
  • This study has two objectives: (1) to evaluate the degradation characteristics of symmetric unbraced steel frames by using analytical approach, and (2) to suggest equation which can approximately estimate the effect of degradation during the schematic design stage. For the analytical approach, the refined plastic hinge method with an arc length algorithm was adopted. The subject of analysis was one story one-bay, multistory one-bay, and multistory three-bay unbraced steel frames. The main parameters of the analytical approach include the stiffness ratio of column to beam and the axial force ratio. The study led to the following conclusions. The normalized stiffness of degradations is affected by both stiffness ratio of column to beam and the axial load ratio; however, the major influence on degradations is the axial force ratio. The equation, which can approximately estimate the effect of degradation, was suggested together with the research results.