• 제목/요약/키워드: 천정 크레인

검색결과 34건 처리시간 0.023초

퍼지 알고리즘을 이용한 비선형 크레인 시스템의 진동방지 및 3차원 위치제어 (Anti-sway and 3D position Control of the Nonlinear Crane System using Fuzzy Algorithm)

  • 이태영;이상룡
    • 한국정밀공학회지
    • /
    • 제16권8호
    • /
    • pp.193-202
    • /
    • 1999
  • Crane operation for transporting heavy loads causes swinging motion at the loads due to crane's acceleration and deceleration. This sway causes the suspension ropes to leave their grooves and leads to possibility of serious damages. So, this swing of the objects is a serious problem and the goal of crane system is transporting to a goal position as soon as possible without the oscillation of the rope. Generally crane is operated by expert's knowledge. Therefore, a satisfactory control method to supress object sway during transport is indispensible. The dynamic behavior of the crane shows nonlinear characteristics. when the length of the rope is changed the crane is time varying system and the design of anti-sway controller is very difficult. In this paper, the nonlinear dynamic model for the industrial overhead crane whose girder, trolley and hoister move simultaneously is derived. and the Fuzzy logic controller based on the expert experiments during acceleration, constant velocity, deceleration and stop position period is proposed to supress the swing motion and control the position of the crane. The performance of the fuzzy controller for the nonlinear crane model is simulated on the personal computer.

  • PDF

오차피드백 제어입력이 개선된 모델추종 시간지연제어기 설계 (A Design of Model-Following Time Delay Controller with Modified Error Feedback Controller)

  • 박병석;윤지섭;강이석
    • 한국정밀공학회지
    • /
    • 제17권12호
    • /
    • pp.176-184
    • /
    • 2000
  • TDC(Time Delay Control) deals with the time-varying system parameters, unknown dynamics and unexpected disturbances using time delay. TDC can be divided into two separate parts: an auxiliary controller and a servo controller. The two controllers can be designed independently. The auxiliary controller is used to reduce sensitivity to parameter variations, nonlinear effects, and other disturbances. The servo controller is to reduce the error between the desired command and output. We propose the model-following time delay controller with modified error feedback controller. This was applied to follow the desired reference model for the uncertain time-varying overhead crane. The model generates the damped-out swinging motion trajectory to suppress the swinging motion caused by the acceleration and the deceleration of crane transportation. The control performance was evaluated through simulations. The theoretical results indicate that this control method shows excellent performance to an overhead crane with the uncertain time-varying parameters.

  • PDF

천정 크레인의 자동화 연구 (A study on automation of crane operation)

  • 박병석;김성현;윤지섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1871-1875
    • /
    • 1997
  • Crane operation is manually accomplished by skilled operators. Recently, the concept of automation is widely introduced in shipping and unloading operation using the overhead crane for the enhanced productivity. In this regards, we designed an angle detector and 3D position detectro which are key evices for this operation. As well as an intellignet control algorithm is developed for the implementation of swing free crane. The performance of the presented algorithm is tested for the swing angle and the position of the overheas crand. The control scheme adopts a feedback control of an angular velocity of swing in initial phase and then the fuzzy controller whose rule base is optimized by a genetic algorithm.

  • PDF

천정크레인의 무진동/위치 제어기 개발에 관한 연구 (A Study on the Anti-Swing and Position Controller for the Overhead Cranes)

  • 윤지섭;강이석
    • 대한기계학회논문집
    • /
    • 제19권6호
    • /
    • pp.1391-1401
    • /
    • 1995
  • This paper addresses design procedure and testing results of a closed-loop motion control of the cranes. When the object is stopped at the desired position, swinging occurs, and such swinging deteriorates the safety and efficiency of the operation of the crane. Therefore, in this paper, the cascade anti-swing and trolley position feedback controller are designed. Anti-swing controller rapidly eliminates swinging of object and position feedback controller reduces the trolley position error. The performance of this controller is investigated through the computer simulation and experiment. From the results of a series of computer simulations and experiments it can be concluded that proposed controller effectively reduces swinging of the object and trolley position error, which shows this controller can be used as an effective tool for the precise control of overhead cranes.

지식베이스를 이용한 천정크레인의 전기고장 진단 및 처방 시스템 개발 (The Development of the Knowldege-Based Electric Fault Diagnosis and Maintenance System for Overhead Cranes)

  • 최승영;김선호
    • 대한산업공학회지
    • /
    • 제20권1호
    • /
    • pp.71-85
    • /
    • 1994
  • Overhead cranes which carry heavy items in construction or production areas consist of structure and electric modules. More than 80% of breakdowns bring out of the electric module. As operators do not know all about cranes, it sometimes takes much time to repair the cranes. In order to resolve this problem, the expert system which can diagnose causes of faults and give instructions for repair to operators, has been developed. The scope of the paper is limited to the electric module. First of all, analyzing symptoms and causes, we have developed a rule base with the expert system shell, EXSYS. Furthermore, for the facility maintenance including repair instructions against the causes, the instruction data base was developed with FOXPRO. On the other hand, for the help of user's understanding the fault causes, the graphic animation module which shows malfunctioning component ports or motions in 3D was developed with the graphic software, TOPAS VGA.

  • PDF

디지털 IIR 필터를 이용한 입력성형기법에 의한 2축 천정크레인의 진동제어 (Vibration Control of the 2 Axial Overhead Crane by Input Shaping Method Using Digital IIR Filter)

  • 노상현;박운환
    • 한국산업융합학회 논문집
    • /
    • 제2권1호
    • /
    • pp.53-59
    • /
    • 1999
  • Input shaping technique has been used as a simple method of controlling vibration. With the conventional methods previously proposed by several authors, the frequency range that shows a good performance is restricted. When the designed frequency being different from the natural frequency of a system, the performance of control degrades remarkably. This paper introduced a new technique that uses digital IIR filter to control vibration. This technique has robustness for changing of parameter. In order to prove this we applied input shaping method to 2 axial overhead crane.

  • PDF

2축 천정 크레인의 무진동 제어 (An anti-swing control for 2 axis overhead cranes)

  • 이호훈;조성근;정연우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1428-1431
    • /
    • 1996
  • This paper proposes an anti-swing control law for a 2 degrees of freedom overhead crane. The dynamic model of a 2 degrees of freedom crane is highly nonlinear and coupled. The model is linearized and decoupled for each degree of freedom of the crane for small motions of the load about the vertical. Then a decoupled anti-swing control law is designed for each degree of freedom of the crane based on the linearized model. The control law consists of a position control loop and an swing angle control loop. The position loop,. is designed based on the loop shaping method and the swing angle loop is designed via the root locus method. Finally, the proposed anti-swing control law is implemented and evaluated on a 2 degrees of freedom prototype crane.

  • PDF

천정형 크레인의 흔들림 억제제어에 관한 SOS 접근법 (Anti-Swing Control of Overhead Crane System using Sum of Squares Method)

  • 홍진현;김철중;좌동경
    • 전기학회논문지
    • /
    • 제62권3호
    • /
    • pp.407-413
    • /
    • 2013
  • This paper proposes anti-swing control of overhead crane system using sum of squares method. The dynamic equations of overhead crane include nonlinear terms, which are transformed into polynomials by using Taylor series expansion. Therefore the dynamic equation of overhead crane can be changed to the system of polynomial equation. On the basis of polynomial dynamics of crane system, we propose the Sum of Squares (SOS) conditions considering the input constraints. In addition, control gains are obtained by numerical tool which is called by SOSTOOL. The effectiveness of the proposed method is demonstrated by numerical simulation.

LQ 제어기를 이용한 천정 크레인의 흔들림 억제 및 위치제어 (Anti-Sway and Position Control of Overhead Crane Using the LQ Controller)

  • 최부식;박종원;손정기;권순재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2753-2755
    • /
    • 2003
  • Overhead crane must do to control occurrence of Anti-Sway according to work situation that is used in case move industry spot's heavy freight, and do safe transfer of freight. Transfer process that make use of crane suspends and consist of series action that put down freight to do relevant addition decreasing the speed before objective while move by schedule section equal speed because increasing the speed after lift thing. This need skill degree by experience because there are operator's function and affinity. Also, must control this effectively because can affect big productivity elevation according to effect that get in transfer of safe freight, Therefore, illuminate physical characteristic of crane and algorithm of motor drive department and there is purpose of this research to do so that correct control may be available through over head crane's shaking control and position control designing LQ controller.

  • PDF

천정 크레인의 진동 저감을 위한 퍼지제어기 및 제어기 개발용 시뮬레이터 설계에 관한 연구 (A study on design of a fuzzy controller and a simulator for development of controller for reducing vibration in overhead crane)

  • 정경채;홍진철;배진호;이달해;이석규;이해영
    • 제어로봇시스템학회논문지
    • /
    • 제2권2호
    • /
    • pp.96-101
    • /
    • 1996
  • In this paper, a simulator is designed along with S/W package for crane controllers. Due to trolley's acceleration or deceleration, cranes inherently cause swing motion of the objects in transporting heavy objects. This swing not only deteriorates the crane handling safety but also increases the processing time. To overcome these drawbacks, the fuzzy rule-based simulator is developed with inhibitory swing at final action. The computer simulation shows that the swing at initial and final positions is removed fast with small position error. The proposed simulator can be used for handling object stabley and the study of effectiveness in unmanned operation of cranes.

  • PDF