• Title/Summary/Keyword: 천연가스 배관

Search Result 109, Processing Time 0.025 seconds

A Study on the Odorization Levels and Management in the Facility using Liquified Natural Gas(LNG) (액화천연가스(LNG) 사용시설내의 부취농도 분포 및 관리방법에 관한 연구)

  • Won, Seung Yeon;Shin, Hun Yong
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.25-32
    • /
    • 2019
  • In many mass-consumption gas facilities, natural gas is not supplied through the pipeline of the gas corporation. LNG is supplied from the gas corporation through the tank lorry to be vaporized. In order to prevent human or property damage due to gas leakage at these facilities, a study was conducted to analyze the concentration of odorant injected at the initial and consumption points. An analysis was performed to confirm the change in odorant concentration according to the pipe position in the gas facility when a constant flow rate flowed. For this study the gas samples were taken with aluminium cylinders(4.5 L) which were created a vacuum at the pressure regulator in which the odorants was injected and the points using the gas. Odorant levels of the samples were analyzed by Gas chromatography(Main Body : Agilent 7890A, Detector : ANTEC 7090).We suggest that the small facilities using LNG need to make the management system by the types of facilities for maintaining the odorization system.

Comparative Evaluation of Environmental Availability for Hydrogen Supply System with Existing Natural Gas Pipeline (천연가스배관을 통한 수소 혼합공급의 환경적 유용성 평가)

  • Kim, Hyoung-Sik;Hong, Seong-Ho;Hwang, Tae-Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.3
    • /
    • pp.28-32
    • /
    • 2009
  • There are two hydrogen supply systems which are central and distributed supply. Central supply system may be cost-effective but huge supply infra cost is needed. For cost-effectiveness, hydrogen supply with existing natural gas pipeline has been focused in Europe. From the analysis results in this study, hydrogen supply method with existing natural gas pipeline is the better for environmental availability including green house effect.

  • PDF

A Variable Analysis of Interconnection Pricing in the Natural Gas Market (국내 가스산업의 상호접속가격결정 요인 분석)

  • 남궁윤;조용현;김보영;이기호;최기련
    • Journal of Energy Engineering
    • /
    • v.8 no.1
    • /
    • pp.166-173
    • /
    • 1999
  • 본 연구는 램지가격결정방식과 효율적요소가격결정방식을 이용하여 향후 국내 가스산업의 배관망공동이용시 발전용 천연가스의 가격 및 이용료 수준을 파악할 수 있는 천연가스 가격 결정의 이론적 모형을 도출하였다. 또한 사례분석을 통하여 램지가격결정방식(RCPR)과 효율적요소가격결정방식(ECPR)하에서 도출된 최적 가격 및 최적 이용료를 비교·분석하였고 결정변수들이 가격과 이용료에 미치는 영향에 대해서 분석하였다. 그 결과 RCPR에 의한 최적 이용료는 쿠르노 불완전 경쟁하에서 한계직접비용 보다 낮게 도출된데 반해서 ECPR에서는 한계직접비용보다 높게 도출됨으로써 가격결정방식에 따라 최적 이용료의 수준이 상이함을 보였다. 또한 도시가스용 및 발전용 가격은 RCPR 하에서 신규사업자 수가 증가할수록 하락하였고 이용료는 증가하여 한계비용에 접근하였다. 한편 최적 발전용 가격과 최적 이용료는 한계직접비용이 클수록 증가되었고, 역가격탄력성이 클수록 최적 발전용 가격은 증가하는 반면에 최적 이용료는 감소하였다.

  • PDF

Temperature Variations in the Natural Gas Pipeline with the Joule-Thomson Effect (Joule-Thomson 효과를 고려한 천연가스 배관내의 온도 변화)

  • Kim Youn J.
    • 한국가스학회:학술대회논문집
    • /
    • 1997.09a
    • /
    • pp.14-19
    • /
    • 1997
  • A numerical method for determining the temperature vartiation in a natural gas transmission line is presented. By considering an element of the gas pipeline and assuming radially lumped heat transfer at steady-state conditions, the energy equation is developed. The integration of the developed nonlinear differential equation is done numerically using the fourth order Runge-Kutta scheme. The results of the present study have been compared with the results of Coulter equations, and show a fairly good agreement.

  • PDF

Study on improvement of efficiency of gas filter at the natural gas valve station (천연가스 공급기지내 가스필터 성능개선에 관한 연구)

  • Cho Y.B.;Jeon K.S.;Her J.Y.;You K.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.47-52
    • /
    • 1998
  • To eliminate foreign substance like metal rust and sand in natural gas pipeline, 250um strainer filter is used present in Korea Gas Corporation. But particles smaller than 250um passing the filter have bad effects to the valves and the measuring equipments. In order to eliminate small paticle in the pipeline, it is necessary to cut down the pore size of filter When we cut down the pore size of filter, the pressure difference between the front of filter and that of the rear part is increasing and disturb normal condition of gas supply. So it is very important to control the condition between the pore size of filter and the pressure difference. In this study, using head loss coefficient K, the estimation method of efficiency of gas filter according to the pore size and the pressure difference is presented.

  • PDF

Optimization of Odor Concentration by Operation of Small Station Odorizer (공급기지 부취설비 운영에 의한 천연가스 부취 농도 최적화)

  • Lee Seung-Ho;Song Taek-Yong;Baek Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.3 s.15
    • /
    • pp.36-44
    • /
    • 2001
  • In case of low odor level, accident probabilities are very high Otherwise, when the odorant concentration is too high, the deterioration of pipeline and governor facilities and the environmental problems may occur. Odorants fade in the pipeline and other equipment due to physical and chemical adsorption and reactions with odorant and materials. So, it is very important to maintain odorant concentration properly In this study, the current status of odorization technologies has been reviewed. And the characteristics of small odorant system have been analyzed. In case that the small odorant system Is introduced in our country, this paper is proposed the feasible management plan and showed feasibility results through the analysis of current available technology.

  • PDF

A Study on the Procedure of Quantitative Risk Assessment for High Pressure Natural Gas Pipeline (도시가스 고압배관의 정량적 위험평가 절차에 관한 연구)

  • Lee, Kyung-Sik;Jo, Young-Do;Ryou, Young-Don;Ko, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.25-31
    • /
    • 2008
  • Recently risk management based on a quantitative assessment is considered to improve the level of safety in Korea. This paper focuses on the procedure of the quantitative risk assessment for natural gas pipelines. For that purpose, the methods to estimate failure frequency based on failure causes from European Gas Pipeline Incident Data Group and BG Transco, to analyze consequence caused by fire, and to calculate individual risk and societal risk have been proposed systematically in this paper. Risk criteria of individual risk and societal risk have been proposed by considering the environment of pipeline route in Korea. The proposed procedure of quantitative risk assessment may be useful for risk management during the planning and building stages of a new pipeline, and modification of buried pipeline.

  • PDF

Investigation on the Effect of Strength Mismatch on Residual Stresses in Welds with Different Strength Used in Buried Natural Gas Pipeline (매설 가스 배관 이종금속 용접부의 강도 불일치가 잔류응력에 미치는 영향 고찰)

  • Kim, Jong-Sung;Kim, Woo-Sik;Baek, Jong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.413-421
    • /
    • 2010
  • In this study, residual-stress distributions in welds with different strength used in natural gas pipelines are calculated by using finite-element analysis and simulating a realistic welding process. The temperature and residual-stress analysis results are compared with the real fusion profile and the application results of the Fitness-For-Service assessment code, API 579 in order to validate the finite-element analysis model and procedure. Parametric study is performed to assess the effect of welding and material variables such as mechanical strength mismatch, the strength of weld metal, reinforcement, and heat input on the residual stress distributions. Finally, on the basis of the parametric study results, the effects of these variables on residual stress distributions are investigated. In particular, the strength mismatch between base metals has an insignificant effect on residual-stress distributions.