• Title/Summary/Keyword: 차수재

Search Result 220, Processing Time 0.025 seconds

Study on the applicability of bentonite-mixed dredged sea sand as a water-proof material (벤토나이트를 혼합한 준설해사의 차수재 활용성)

  • Kim, Seo-Ryong;Lee, Duc-Won;Kong, Kil-Yong;Woo, Jeon-Yong;Kim, Hyun-Tae
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.175-178
    • /
    • 2003
  • There is a case to use dredged-sea sand as a filling material because of difficulty of obtaining required filling material for tideland reclamation project from the land. At this time, side slope erosion is occurred because the precipitation falling to the top of bank acts as infiltration water when it pass through inside of the semi-permeable filling section. This study has confirmed the declining effect of permeability by conducting permeability test to the condition of mixing of bentonite to the dredged sea-sand. And also this study has confirmed that the above processed-soil could be used as a water-proof layer to protect infiltration of water through the infiltration flow analysis.

  • PDF

토양안정제에 의한 폐기물 매립장 차수재의 수리전도도 특성

  • 임은진;이재영;이복일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.390-393
    • /
    • 2002
  • Many researchers have studied for the barrier liner in the landfill that is mixed with clay mineral, native soils and solidified agent. However, they have a littel but problems for safety construction and maintenance as a bottom liner systems in the landfill. In this paper the authors studied the effects on hydraulic conductivity by electric-chemical ion-exchange agent that is a soil stabilization agent(Sulphonated Oil), The application of the soil stabilization agent to meet the hydraulic conductivity of clay liner in landfill is possible if the additive quantity and a proper reaction time is determined relevantly in the laboratory test.

  • PDF

A Study on the Strength of Geotextile and the Influence of Settlement in a Waste Landfill (폐기물 매립지 인공합성 차수재 강도와 침하영향에 관한 연구)

  • 장연수;임학수;권강오
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.241-245
    • /
    • 2000
  • In this paper, the results of the direct shear interface friction test is introduced to understand interface friction between geosynthetic materials that are required for analyzing slope stability of the liner system of waste landfills. Tensile stresses that occur in a liner system due to differential settlement with waste load are estimated using FLAC. It was shown that HDPE/geocomposite inteface friction angle is 11.9$^{\circ}$, HDPE/wastes is 12.0$^{\circ}$ and geotextile/wastes is 28.0$^{\circ}$. Tensile stress due to settlement in a foundation of landfill is well within the limits of tensile strength regulated by waste treatment law.

  • PDF

Stress-Strain of Geomembranes In Landfill Under Punctiform Loads (폐기물매립장 차수재의 꿰뚫림 하중에 의한 응력-변형)

  • 이광열;정진교
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.06a
    • /
    • pp.55-65
    • /
    • 2001
  • Geotextiles are usually constructed as a protective layer of geomembranes in liner systems for the solid waste landfill. A protective layer and geomembrane are susceptible to mechanical damage by coarse grains in the overlying drainage layer. In this study, therefore, the strain behavior of geotextile protective layers was investigated using three different types of devices for developing punctiform loads. The results of the study showed that the rates of strain was different depend upon device types for functiform loads. Also, It was found that the increases in strain was approximately linear in range 20 to 6$0^{\circ}C$ , and pp-filament non-woven geotextiles yielded a better efficiency than pp-staple fiber non-woven geotextiles.

  • PDF

Evaluation of Physical Properties of Liner and Cover Material Crystalline admixture (결정질혼화제를 함유한 광산차수재 물성평가)

  • Cho, Yong-Kwang;Kim, Jin-Sung;Kim, Chun-Sik;Jo, Sung-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.227-228
    • /
    • 2021
  • There are various problems caused by environmental pollution around the abandoned mines. In addition, they are exposed to the risk of safety accidents due to sinkholes caused by ground subsidence. Therefore, the ground is stabilized through the filling and construction of abandoned mines using industrial by-products. However, in the case of Backfill Material, secondary pollution caused by acidic drainage and leachate is not suppressed. To solve this problem, the liner and cover material is first installed. Therefore, in this study, the watertightness of the liner and cover material was improved by mixing crystalline admixtures by content.

  • PDF

Evaluation of Geotechnical Engineering Properties and Use of Mixed Soil Containing Waste Stone Sludge (폐석분 혼합토의 지반공학적 특성 및 활용에 관한 연구)

  • Kim, Chan-Kee;Jung, Soo-Hoon;Cho, Won-Bum
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.3
    • /
    • pp.17-24
    • /
    • 2008
  • This study is conducted to investigate the possibility of the utilization of the mixed soil formed by mixing stone sludge, bentonite, and residual soil as a soil sealant sustaining both stability and capacity in the barrier system. A series of tests were performed on the mixed soils to evaluate basic properties such as compaction, compressive strength, permeability and CBR of these materials. The results indicates that as the stone sludge content increases, the optimum moisture content increases a little, but the maximum dry density decreases. The compressive strength and CBR decrease, and the cohesion, internal friction angle and expansion ratio increase. When the bentonite content increases, the maximum dry density decreases, and the optimum moisture content, compressive strength and cohesion, internal friction angle, CBR and expansion ratio increase. Mixing ratio of the mixed soil contained with the stone dust more than 10% and the bentonite less than 10% satisfies the standard of the permeability coefficient as the soil sealant.

  • PDF

Resistance to Acid and Sulfate of Concrete Containing Mineral Admixtures (광물질 혼화재를 혼입한 콘크리트의 산 및 황산염 저항성)

  • Park, Jae-Im;Bae, Su-Ho;Lee, Kwang-Myong;Cha, Soo-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.281-282
    • /
    • 2009
  • The purpose of this experimental research is to investigate the influence of mineral admixtures on the resistance to acid and sulfate. For this purpose, concrete specimens with types of mineral admixtures such as ground granulated blast-furnace slag, fly ash, and silica fume were made for water-binder ratios of 32% and 43%. It was observed from the test result that the resistance against acid and sulfate of the concretes containing mineral admixtures were much better than the case of plain concrete from immersion tests of 182 days.

  • PDF

A Applicability Study on Single Grouted Column Method (C-RJP Grouting) for Buoyancy-Resistant Permanent Anchor in Highly Permeable Volcanic Clastic Zones (투수성이 높은 화산쇄설층에서 부력앵커 시공을 위한 단일공 차수공법 (C-RJP Grouting)의 적용성에 관한 연구)

  • Jung, Yonggun;Chae, Youngsu;Park, Byunghee;Kim, Jeongryeol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.8
    • /
    • pp.5-12
    • /
    • 2015
  • In this study, buoyancy-resistance permanent anchor was considered to prevent uplift pressure of a building structure. However, this test was failed to put anchor body in the boring hole because of the rapid outflow of ground water and coefficient of permeability. In addition, the hole where the anchor body was forcefully inserted constantly flew the sea water and cement. And it was found that anchor was not settled in the ground. In order to solve this problem, jet grouting method was applied to block the ground water and the single grouted column method was chosen to install the buoyancy-resistance permanent anchor. In this paper, the single grouted column method was applied with the general jet grouting methods and grout material was fixed by 3-field tests. These tests confirmed the effect of permeability and ground improvement with field permeability test by core sampling, Standard Penetration Test (SPT) and unconfined compression test. Confirming the stability of the buoyancy-resistance permanent anchor with installation and tension test, application of the single grouted column method in the volcanic clastic zones was verified.

A Feasibility Study on GMC (Geo-Multicell-Composite) of the Leachate Collection System in Landfill (폐기물 매립시설의 배수층 및 보호층으로서의 Geo-Multicell-Composite(GMC)의 적합성에 관한 연구)

  • Jung, Sung-Hoon;Oh, Seungjin;Oh, Minah;Kim, Joonha;Lee, Jai-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.67-76
    • /
    • 2013
  • Landfill require special care due to the dangers of nearby surface water and underground water pollution caused by leakage of leachate. The leachate does not leak due to the installation of the geomembrane but sharp wastes or landfill equipment can damage the geomembrane and therefore a means of protecting the geomembrane is required. In Korea, in accordance with the waste control act being modified in 1999, protecting the geosynthetics liner on top of the slope of landfill and installing a drainage layer to fluently drain leachate became mandatory, and technologies are being researched to both protect the geomembrane and quickly drain leachate simultaneously. Therefore, this research has its purpose in studying the drainage functions of leachate and protection functions of the geomembrane in order to examine the application possibilities of Geo-Multicell-Composite (GMC) as a Leachate Collection Removal and Protection System (LCRPs) at the slope on top of the geomembrane of landfill by observing methods of inserting filler with high-quality water permeability at the drainage net. GMC's horizontal permeability coefficient is $8.0{\times}10^{-4}m^2/s$ to legal standards satisfeid. Also crash gravel used as filler respected by vertical permeability is 5.0 cm/s, embroidering puncture strength 140.2 kgf. A result of storm drain using artificial rain in GMC model facility, maxinum flow rate of 1,120 L/hr even spray without surface runoff was about 92~97% penetration. Further study, instead of crash gravel used as a filler, such as using recycled aggregate utilization increases and the resulting construction cost is expected to savings.

The Change in Geotechnical Properties of Clay Liner and the Contamination Behavior of Groundwater Due to Contaminant (오염물질에 의한 점토 차수재의 역학적 특성변화 및 지하수 오염거동)

  • Ha, Kwang-Hyun;Lee, Sang-Eun;Chung, Sung-Rae;Chun, Byung-Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.13-23
    • /
    • 2008
  • The triaxial compression tests and consolidation tests using NaCl solution and leachates as substitute pore (or saturated) water in samples were carried out to find out the behavior characteristics of strength, deformation and permeability coefficient of contaminated clay. Also, the chemical property analysis on the clay samples using scanning electron microscope and energy dispersive x-ray spectrometer were involved. The magnitudes of composition ratio were shown in the order of O, C, Si, Al, and Fe as a result of chemical composition analysis for clay samples. Besides, as the results of triaxial compression tests and consolidation tests, the shear strength, compression and permeability properties were increased with increasing in the concentration of contaminant (NaCl). It may be considered that these circumstances be caused by the changes of soil structure to flocculent structure due to the decrease in the thickness of diffuse double layer with increasing in the concentration of electrolyte. MT3D model was also using to grasp the procedures that the groundwater may be contaminated by the leachates permeated through the clay liner. The results of contaminant transport analysis showed a tendency that the predicted concentration of groundwater was higher with increasing in the initial concentration of $Cl^-$ ion and increased as a nonlinear curves with time. The transportation distance calculated by the use of regression equation between the distance from contaminant source and the concentration of $Cl^-$ ion was increased with increasing the initial concentration.