• Title/Summary/Keyword: 직사각형 구멍

Search Result 10, Processing Time 0.024 seconds

Free Vibration Analysis of Rectangular Plate with Multiple Rectangular Cutouts by Independent Coordinate Coupling Method (독립좌표연성법을 이용한 여러 개의 직사각형 구멍을 갖는 직사각형 평판의 자유진동해석)

  • Kwak, Moon-K.;Song, Myung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.881-887
    • /
    • 2007
  • This paper is concerned with the vibration analysis of a rectangular plate with multiple rectangular holes. Even though there have been many methods developed for the addressed problem, they suffer from computational time. In this paper, we applied the Independent Coordinate Coupling Method(ICCM) to the addressed problem, which was developed to compute natural vibration characteristics of the rectangular plate with a rectangular hole and proven to be computationally effective. The ICCM is based on Rayleigh-Ritz method but utilizes independent coordinates for each hole domain. By matching the deflection conditions for each hole imposed on the expressions, we can easily derive the reduced mass and stiffness matrices. The resulting equation is then used for the calculation of the eigenvalue problem. The numerical results show the efficacy of the Independent Coordinate Coupling Method.

Free Vibration Analysis of Rectangular Plate with a Rectangular Cutout (직사각형 구멍을 갖는 직사각형판의 자유진동해석)

  • Kwak, Moon-K.;Han, Sang-Bo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.593-599
    • /
    • 2005
  • This paper is concerned with the vibration analysis of a rectangular plate with a rectangular hole. Even though there have been many methods developed for the addressed problem, they suffer from computational time. In this paper, we developed a new methodology called Independent Coordinate Coupling Method which can couple two independent coordinate systems for the entire plate domain and the hole. By matching the deflection condition imposed on the expressions, the relationship between the global axes and the local axes is derived. This formula is then used for the calculation of the eigenvalue problem. The numerical results show the efficacy of the proposed method.

  • PDF

Free Vibration Analysis of Rectangular Plate with a Rectangular Cutout by Independent Coordinate Coupling Method (독립좌표연성법을 이용한 직사각형 구멍을 갖는 직사각형 평판의 자유진동해석)

  • Kwak, Moon K.;Han, Sangbo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1398-1407
    • /
    • 2005
  • This paper is concerned with the vibration analysis of a rectangular plate with a rectangular hole. Even though there have been many methods developed for the addressed problem, they suffer from computational time. In this paper, we developed a new methodology called Independent Coordinate Coupling Method which can couple two independent coordinate systems for the entire plate domain and the hole. By matching the deflection condition imposed on the expressions, the relationship between the global axes and the local axes is derived. This formula is then used for the calculation of the eigenvalue problem. The numerical results show the efficacy of the proposed method.

Free Vibration Analysis of Rectangular Plate with Multiple Circular Cutouts by Independent Coordinate Coupling Method (독립좌표연성법을 이용한 여러 개의 원형 구멍을 갖는 직사각형 평판의 자유진동해석)

  • Kwak, Moon K.;Song, Myung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1086-1092
    • /
    • 2007
  • This paper is concerned with the vibration analysis of a rectangular plate with multiple circular holes. On the contrary to the case of rectangular plate with multiple rectangular holes, it is very difficult to perform qualitative analysis on natural vibration characteristics because of geometrical inconsistency. In this paper, we applied the Independent Coordinate Coupling Method(ICCM) to the addressed problem, which was developed to compute natural vibration characteristics of the rectangular plate with a circular hole and proven to be computationally effective. The ICCM is based on Rayleigh-Ritz method but utilizes independent coordinates for each hole domain. By matching the deflection conditions for each hole imposed on the expressions, we can easily derive the reduced mass and stiffness matrices. The resulting equation is then used for the calculation of the eigenvalue problem. The numerical results show the efficacy of the Independent Coordinate Coupling Method.

Free Vibration Analysis of Simply-Supported Rectangular Plate with a Circular Cutout by Independent Coordinate Coupling Method (독립좌표연성법을 이용한 원형 구멍을 갖는 단순지지 직사각형 평판의 자유진동해석)

  • Kwak, Moon-K.;Han, Sang-Bo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1177-1182
    • /
    • 2006
  • This paper is concerned with the vibration analysis of a simply-supported rectangular plate with a circular cutout. Even though there have be en many methods developed for the free vibration of the rectangular plate with a rectangular cutout., very few research has been carried out for the rectangular plate with a circular cutout. In this paper, a new methodology called independent coordinate coupling method, which was developed to save the computational effort for the free vibration analysis of rectangular plate with a rectangular cutout, is applied to the case of circular cutout. The independent coordinate coupling method employs the global coordinate system for the plate and the local coordinate system for the cutout. In the case of the rectangular plate with a circular cutout, the global coordinate system is the Cartesian co ordinate system and the local coordinate system is the polar coordinate system. By imposing the compatibility condition, the relationship between the global coordinates and the local coordinates is derived. This equation is then used for the calculation of the mass and stiffness matrices resulting in eigenvalue problem. The numerical results show the efficacy of the proposed method.

  • PDF

Free Vibration Analysis of Simply-supported Rectangular Plate with a Circular Cutout by Independent Coordinate Coupling Method (독립좌표연성법을 이용한 원형 구멍을 갖는 단순지지 직사각형 평판의 자유진동해석)

  • Kwak, Moon-K.;Han, Sang-Bo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.643-650
    • /
    • 2006
  • This paper is concerned with the vibration analysis of a simply-supported rectangular plate with a circular cutout. Even though there have been many methods developed for the free vibration of the rectangular plate with a rectangular cutout, very few research has been carried out for the rectangular plate with a circular cutout. In this paper, a new methodology called independent coordinate coupling method, which was developed to save the computational effort for the free vibration analysis of rectangular plate with a rectangular cutout, is applied to the case of circular cutout. The independent coordinate coupling method employs the global coordinate system for the plate and the local coordinate system for the cutout. In the case of the rectangular plate with a circular cutout, the global coordinate system is the Cartesian coordinate system and the local coordinate system is the polar coordinate system. By imposing the compatibility condition, the relationship between the global coordinates and the local coordinates is derived. This equation is then used for the calculation of the mass and stiffness matrices resulting in eigenvalue problem. The numerical results show the efficacy of the proposed method.

Hydroelastic Vibration of a Rectangular Plate with a Rectangular Hole (직사각형 구멍을 갖는 직사각형 평판의 접수진동)

  • Kwak, Moon-K.;Han, Sang-Bo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.1
    • /
    • pp.29-37
    • /
    • 2012
  • This paper is concerned with the natural vibration characteristics of a rectangular plate with a rectangular hole in contact with the water. The addressed problem was solved by using the Rayleigh-Ritz method combined with the Green function method. This study presents the numerical approach, numerical results and experimental results. In addition, the validity of the approximate formula which mainly depends on the so-called non-dimensionalized added virtual mass incremental factor and the natural mode shape change due to the presence of the water were investigated. Experiments were also carried out to validate theoretical results. The theoretical results are in good agreement with the experimental results. It was found that the effect of a square hole on the natural frequencies of the square plate in contact with water is different from the effect of a square hole on the natural frequencies of the square plate in air and the approximate formula can predict lower natural frequencies in water with a good accuracy.

Dynamic Modeling and Active Vibration Control of Cylindrical Shell equipped with MFC Actuators (MFC 작동기가 부착된 박판 실린더 쉘의 동적 모델링과 능동진동제어)

  • Kwak, Moon-K.;Jung, Moon-San;Bae, Byung-Chan;Lee, Myuing-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1229-1234
    • /
    • 2006
  • This paper is concerned with the dynamic modeling and controller design for a cylindrical shell equipped with MFC actuators. The dynamic model was derived by using Ravleigh-Ritz method based on Donnel-Mushtari shell theory. The boundary conditions at both ends were assumed to be shear diaphragm. To verify the theoretical results, a cylindrical shell structure made of aluminum was built ana tested by using impact hammer. Experimental results show that there are little discrepancies compared to theoretical results because of the boundary conditions at both ends. The MFC actuators were glued to the cylindrical shell in longitudinal and circumferential directions. The PPF controller were designed for lowest two modes and applied to the MFC actuators. The experimental results show that vibrations can be successfully suppressed.

  • PDF

Development of Hydraulic Jet Dredge ( 1 ) - Water tank Experiment for the Excavating Performance of Water-Jet Nozzle on the Sand - (분사식 행망의 개발에 관한 연구 ( I ) - 분사노즐의 사면 굴삭성능에 관한 수조실험 -)

  • Jo, Bong-Gon;Go, Gwan-Seo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.4
    • /
    • pp.255-265
    • /
    • 1991
  • In order to find the excavating performance of water-jet nozzle on the sand, the authors were carried out the excavating experiment with the model nozzles which were semi circular sectioned nozzles and rectangular nozzle in water tank. The results were as follows. 1) Excavating maximum depth and width on the sand by the water jet were straightly increased in proportion to the velocity of water jet and the section area of nozzle, and that, by the nozzle distance from the excavating point on the sand, the depth was decreased, while the width was increased straightly. 2) Rectangular nozzle which the thick of hole is 1mm, was a little bit better than the circular nozzle of the same sectioned area on the excavating performance. 3) Empirical equations between the velocity of water jet, the distance of nozzle, and the maximum excavating depth and width by angle of nozzle were expressed as linear, they were as follows on the 45$^{\circ}$ angle of the rectangular nozzle(1$\times$12mm); D=0.0093V sub(0)-0.23H+5.7. W=0.0147V sub(0)+1.06H+10.2. where, D is the maximum excavating depth(cm), W is the maximum excavation width(cm), V sub(0) is the velocity of water jet(cm/s); 926$\leq$V sub(0)$\leq$1504, H is the distance(cm) from nozzle tip to water-jetted point on the surface of sand.

  • PDF

Experimental Study on Synthetic Jet Actuators for Separation Delay (유동 박리를 지연시키기 위한 합성제트 구동기 연구)

  • Kwon, O-Hyun;Byun, Seon-Woo;Roh, Jin-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.10-17
    • /
    • 2018
  • The size of commercial wind turbines has been increased. Generally, the pitch control is used to increase the efficiency of wind turbine. However, the pitch control has difficulty to control the local unsteady flow control which makes fatigue load and decreases the efficiency. In this research, Synthetic Jet Actuators(SJAs) are manufactured and applied into a wing section to delay flow separation and increase aerodynamic performances. The SJAs as a kind of zero-net mass-flux actuators injects and removes fluid through a small orifice with a given frequency. The SJA modules actuated by piezoelectric disks are manufactured and the aerodynamic performances are measured according to the shape of the orifice and the velocity of the jets through the wind tunnel test. It is confirmed that as the velocity of the jets are increased using rectangular shape orifice, drag force is decreased and lift force in increased.