• Title/Summary/Keyword: 지표면 데이터

Search Result 125, Processing Time 0.025 seconds

A Study on the Change of Magma Activity from 2002 to 2009 at Mt. Baekdusan using Surface Displacement (지표변위를 활용한 백두산의 2002-2009년 마그마 활동 양상 변화 연구)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun;Chang, Cheolwoo
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.470-478
    • /
    • 2013
  • There have been a number of observed precursors of volcanic activities- such as volcanic earthquake, surface inflation, specific volcanic gas emission, temperature of hot spring- at Mt. Baekdusan since 2002. We identified the increase of the volume of magma chamber beneath Mt. Baekdusan as we observed an inflation trend of vertical and horizontal surface displacement around Cheonji caldera lake by using precise leveling data from 2002 to 2009. The surface displacement trend changed to deflation in 2010, and the trend changed to inflation again after a while. Utilizing the data of inflated surface (46.33 mm) on the northern slope of Mt. Baekdusan from 2002 to 2003, we calculated the volume change of magma chamber beneath the Mt. Baekdusan. The volume change was about 0.008 $km^3$ ($7.7-8.0{\times}10^6m^3$) from 2002 to 2003. It indicated that a new magma (0.008 $km^3$) injected to the magma chamber 5 km below Mt. Baekdusan.

Instantaneous Monitoring of Pollen Distribution in the Atmosphere by Surface-based Lidar (지상 라이다를 이용한 대기중 꽃가루 분포 실시간 모니터링)

  • Noh, Young-Min;Mueller, Detlef;Lee, Kwon-Ho;Choi, Young-Jean;Kim, Kyu-Rang;Lee, Han-Lim;Choi, Tae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • The diurnal variation in pollen vertical distributions in the atmosphere was observed by a surface-based lidar remote sensing technique. Aerosol extinction coefficient and depolarization ratio at 532 nm were obtained from lidar measurements in spring ($4^{th}$ May - $2^{nd}$ June) 2009 at Gwangju Institute of Science & Technology (GIST) located in Gwangju, Korea ($35.15^{\circ}E$, $126.53^{\circ}N$). Unusual variations of depolarization ratio were observed for six days from $4^{th}$ to $9^{th}$ May. Depolarization ratios varied from 0.08 to 0.14 were detected at the low altitude in the morning. The altitude with those high depolarization ratios was increased up to 1.5 - 2.0 km at the time interval between 12:00 and 14:00 LT and then decreased. The temporal variations in high values of depolarization ratios from lidar measurements show good agreement in patterns with the sampled pollen concentrations measured using the Burkard trap sampler. This study demonstrates that the pollen distribution data obtained by lidar measurements can be a useful tool for investigating spatial and temporal characteristic of pollen particles.

Estimation of surface-level PM2.5 concentration based on MODIS aerosol optical depth over Jeju, Korea (MODIS 자료의 에어로졸의 광학적 두께를 이용한 제주지역의 지표면 PM2.5 농도 추정)

  • Kim, Kwanchul;Lee, Dasom;Lee, Kwang-yul;Lee, Kwonho;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.5
    • /
    • pp.413-421
    • /
    • 2016
  • In this study, correlations between Moderate Resolution Imaging Spectroradiometer (MODIS) derived Aerosol Optical Depth (AOD) values and surface-level $PM_{2.5}$ concentrations at Gosan, Korea have been investigated. For this purpose, data from various instruments, such as satellite, sunphotometer, Optical Particle Counter (OPC), and Micro Pulse Lidar (MPL) on 14-24 October 2009 were used. Direct comparison between sunphotometer measured AOD and surface-level $PM_{2.5}$ concentrations showed a $R^2=0.48$. Since the AERONET L2.0 data has significant number of observations with high AOD values paired to low surface-level $PM_{2.5}$ values, which were believed to be the effect of thin cloud or Asian dust. Correlations between MODIS AOD and $PM_{2.5}$ concentration were increased by screening thin clouds and Asian dust cases by use of aerosol profile data on Micro-Pulse Lidar Network (MPLNet) as $R^2$ > 0.60. Our study clearly demonstrates that satellite derived AOD is a good surrogate for monitoring atmospheric PM concentration.

Estimation for Ground Air Temperature Using GEO-KOMPSAT-2A and Deep Neural Network (심층신경망과 천리안위성 2A호를 활용한 지상기온 추정에 관한 연구)

  • Taeyoon Eom;Kwangnyun Kim;Yonghan Jo;Keunyong Song;Yunjeong Lee;Yun Gon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.207-221
    • /
    • 2023
  • This study suggests deep neural network models for estimating air temperature with Level 1B (L1B) datasets of GEO-KOMPSAT-2A (GK-2A). The temperature at 1.5 m above the ground impact not only daily life but also weather warnings such as cold and heat waves. There are many studies to assume the air temperature from the land surface temperature (LST) retrieved from satellites because the air temperature has a strong relationship with the LST. However, an algorithm of the LST, Level 2 output of GK-2A, works only clear sky pixels. To overcome the cloud effects, we apply a deep neural network (DNN) model to assume the air temperature with L1B calibrated for radiometric and geometrics from raw satellite data and compare the model with a linear regression model between LST and air temperature. The root mean square errors (RMSE) of the air temperature for model outputs are used to evaluate the model. The number of 95 in-situ air temperature data was 2,496,634 and the ratio of datasets paired with LST and L1B show 42.1% and 98.4%. The training years are 2020 and 2021 and 2022 is used to validate. The DNN model is designed with an input layer taking 16 channels and four hidden fully connected layers to assume an air temperature. As a result of the model using 16 bands of L1B, the DNN with RMSE 2.22℃ showed great performance than the baseline model with RMSE 3.55℃ on clear sky conditions and the total RMSE including overcast samples was 3.33℃. It is suggested that the DNN is able to overcome cloud effects. However, it showed different characteristics in seasonal and hourly analysis and needed to append solar information as inputs to make a general DNN model because the summer and winter seasons showed a low coefficient of determinations with high standard deviations.

Fast Detection of Power Lines Using LIDAR for Flight Obstacle Avoidance and Its Applicability Analysis (비행장애물 회피를 위한 라이다 기반 송전선 고속탐지 및 적용가능성 분석)

  • Lee, Mijin;Lee, Impyeong
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.75-84
    • /
    • 2014
  • Power lines are one of the main obstacles causing an aircraft crash and thus their realtime detection is significantly important during flight. To avoid such flight obstacles, the use of LIDAR has been recently increasing thanks to its advantages that it is less sensitive to weather conditions and can operate in day and night. In this study, we suggest a fast method to detect power lines from LIDAR data for flight obstacle avoidance. The proposed method first extracts non-ground points by eliminating the points reflected from ground surfaces using a filtering process. Second, we calculate the eigenvalues for the covariance matrix from the coordinates of the generated non-ground points and obtain the ratio of eigenvalues. Based on the ratio of eigenvalues, we can classify the points on a linear structure. Finally, among them, we select the points forming horizontally long straight as power-line points. To verify the algorithm, we used both real and simulated data as the input data. From the experimental results, it is shown that the average detection rate and time are 80% and 0.2 second, respectively. If we would improve the method based on the experiment results from the various flight scenario, it will be effectively utilized for a flight obstacle avoidance system.

Automatic Extraction of Buildings using Aerial Photo and Airborne LIDAR Data (항공사진과 항공레이저 데이터를 이용한 건물 자동추출)

  • 조우석;이영진;좌윤석
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.307-317
    • /
    • 2003
  • This paper presents an algorithm that automatically extracts buildings among many different features on the earth surface by fusing LIDAR data with panchromatic aerial images. The proposed algorithm consists of three stages such as point level process, polygon level process, parameter space level process. At the first stage, we eliminate gross errors and apply a local maxima filter to detect building candidate points from the raw laser scanning data. After then, a grouping procedure is performed for segmenting raw LIDAR data and the segmented LIDAR data is polygonized by the encasing polygon algorithm developed in the research. At the second stage, we eliminate non-building polygons using several constraints such as area and circularity. At the last stage, all the polygons generated at the second stage are projected onto the aerial stereo images through collinearity condition equations. Finally, we fuse the projected encasing polygons with edges detected by image processing for refining the building segments. The experimental results showed that the RMSEs of building corners in X, Y and Z were 8.1cm, 24.7cm, 35.9cm, respectively.

Post-processing Method of Point Cloud Extracted Based on Image Matching for Unmanned Aerial Vehicle Image (무인항공기 영상을 위한 영상 매칭 기반 생성 포인트 클라우드의 후처리 방안 연구)

  • Rhee, Sooahm;Kim, Han-gyeol;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1025-1034
    • /
    • 2022
  • In this paper, we propose a post-processing method through interpolation of hole regions that occur when extracting point clouds. When image matching is performed on stereo image data, holes occur due to occlusion and building façade area. This area may become an obstacle to the creation of additional products based on the point cloud in the future, so an effective processing technique is required. First, an initial point cloud is extracted based on the disparity map generated by applying stereo image matching. We transform the point cloud into a grid. Then a hole area is extracted due to occlusion and building façade area. By repeating the process of creating Triangulated Irregular Network (TIN) triangle in the hall area and processing the inner value of the triangle as the minimum height value of the area, it is possible to perform interpolation without awkwardness between the building and the ground surface around the building. A new point cloud is created by adding the location information corresponding to the interpolated area from the grid data as a point. To minimize the addition of unnecessary points during the interpolation process, the interpolated data to an area outside the initial point cloud area was not processed. The RGB brightness value applied to the interpolated point cloud was processed by setting the image with the closest pixel distance to the shooting center among the stereo images used for matching. It was confirmed that the shielded area generated after generating the point cloud of the target area was effectively processed through the proposed technique.

Satellite-Based Cabbage and Radish Yield Prediction Using Deep Learning in Kangwon-do (딥러닝을 활용한 위성영상 기반의 강원도 지역의 배추와 무 수확량 예측)

  • Hyebin Park;Yejin Lee;Seonyoung Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1031-1042
    • /
    • 2023
  • In this study, a deep learning model was developed to predict the yield of cabbage and radish, one of the five major supply and demand management vegetables, using satellite images of Landsat 8. To predict the yield of cabbage and radish in Gangwon-do from 2015 to 2020, satellite images from June to September, the growing period of cabbage and radish, were used. Normalized difference vegetation index, enhanced vegetation index, lead area index, and land surface temperature were employed in this study as input data for the yield model. Crop yields can be effectively predicted using satellite images because satellites collect continuous spatiotemporal data on the global environment. Based on the model developed previous study, a model designed for input data was proposed in this study. Using time series satellite images, convolutional neural network, a deep learning model, was used to predict crop yield. Landsat 8 provides images every 16 days, but it is difficult to acquire images especially in summer due to the influence of weather such as clouds. As a result, yield prediction was conducted by splitting June to July into one part and August to September into two. Yield prediction was performed using a machine learning approach and reference models , and modeling performance was compared. The model's performance and early predictability were assessed using year-by-year cross-validation and early prediction. The findings of this study could be applied as basic studies to predict the yield of field crops in Korea.

Lane Detection on Non-flat Road Using Piecewise Linear Model (굴곡진 도로에서의 구간 선형 모델을 이용한 차선 검출)

  • Jeong, Min-Young;Kim, Gyeonghwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.6
    • /
    • pp.322-332
    • /
    • 2014
  • This paper proposes a robust lane detection algorithm for non-flat roads by combining a piecewise linear model and dynamic programming. Compared with other lane models, the piecewise linear model can represent 3D shapes of roads from the scenes acquired by monocular camera since it can form a curved surface through a set of planar road. To represent the real road, the planar roads are created by various angles and positions at each section. And dynamic programming determines an optimal combination of planar roads based on lane properties. Experiment results demonstrate the robustness of proposed algorithm against non-flat road, curved road, and camera vibration.

The probabilistic estimation of inundation region using a multiple logistic regression analysis (다중 Logistic 회귀분석을 통한 침수지역의 확률적 도출)

  • Jung, Minkyu;Kim, Jin-Guk;Uranchimeg, Sumiya;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.121-129
    • /
    • 2020
  • The increase of impervious surface and development along the river due to urbanization not only causes an increase in the number of associated flood risk factors but also exacerbates flood damage, leading to difficulties in flood management. Flood control measures should be prioritized based on various geographical information in urban areas. In this study, a probabilistic flood hazard assessment was applied to flood-prone areas near an urban river. Flood hazard maps were alternatively considered and used to describe the expected inundation areas for a given set of predictors such as elevation, slope, runoff curve number, and distance to river. This study proposes a Bayesian logistic regression-based flood risk model that aims to provide a probabilistic risk metric such as population-at-risk (PAR). Finally, the logistic regression model demonstrates the probabilistic flood hazard maps for the entire area.