DOI QR코드

DOI QR Code

Estimation of surface-level PM2.5 concentration based on MODIS aerosol optical depth over Jeju, Korea

MODIS 자료의 에어로졸의 광학적 두께를 이용한 제주지역의 지표면 PM2.5 농도 추정

  • Kim, Kwanchul (Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology) ;
  • Lee, Dasom (Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology) ;
  • Lee, Kwang-yul (Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology) ;
  • Lee, Kwonho (The Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University) ;
  • Noh, Youngmin (International Environmental Research Center, Gwangju Institute of Science and Technology)
  • 김관철 (광주과학기술원 지구환경공학부) ;
  • 이다솜 (광주과학기술원 지구환경공학부) ;
  • 이광열 (광주과학기술원 지구환경공학부) ;
  • 이권호 (강릉원주대학교 대기환경과학과) ;
  • 노영민 (광주과학기술원 국제환경연구소)
  • Received : 2016.06.22
  • Accepted : 2016.08.04
  • Published : 2016.10.31

Abstract

In this study, correlations between Moderate Resolution Imaging Spectroradiometer (MODIS) derived Aerosol Optical Depth (AOD) values and surface-level $PM_{2.5}$ concentrations at Gosan, Korea have been investigated. For this purpose, data from various instruments, such as satellite, sunphotometer, Optical Particle Counter (OPC), and Micro Pulse Lidar (MPL) on 14-24 October 2009 were used. Direct comparison between sunphotometer measured AOD and surface-level $PM_{2.5}$ concentrations showed a $R^2=0.48$. Since the AERONET L2.0 data has significant number of observations with high AOD values paired to low surface-level $PM_{2.5}$ values, which were believed to be the effect of thin cloud or Asian dust. Correlations between MODIS AOD and $PM_{2.5}$ concentration were increased by screening thin clouds and Asian dust cases by use of aerosol profile data on Micro-Pulse Lidar Network (MPLNet) as $R^2$ > 0.60. Our study clearly demonstrates that satellite derived AOD is a good surrogate for monitoring atmospheric PM concentration.

본 연구는 제주 고산에서 Moderate Resolution Imaging Spectroradiometer(MODIS)로 산출된 Aerosol Optical Depth(AOD)와 지표면 $PM_{2.5}$와의 상관성 연구를 수행하였다. 이를 위해 위성자료, 선포토미터, Optical Particle Counter(OPC), Micro Pulse Lidar(MPL)자료가 사용되었다. 2009년 10월 14일부터 24일까지 고산에서 측정된 선포토미터 L2.0자료와 $PM_{2.5}$ 자료의 초기 상관성 검토에서는 $R^2=0.48$의 상관성을 보였지만 고산에서 측정된 Micro-Pulse Lidar Network(MPLNet)의 에어로졸 수직분포 데이터를 사용하여 옅은 구름이나 황사의 영향을 제거한 후에는 상관성이 개선되어 $R^2=0.60$ 이상의 값이 산출되었다. 이러한 결과는 인공위성 자료로부터 측정된 AOD를 이용하여 대기 미세먼지 감시에 활용할 수 있는 가능성을 확인하여 주었다.

Keywords

References

  1. Alfaro, S. C., L. Gomes, J. L. Rajot, S. Lafon, A. Gaudichet, B. Chatenet, M. Maille, G. Cautenet, F. Lasserre, and X. Y. Zhang, 2003. Chemical and optical characterization of aerosols measured in spring 2002 at the ACE-Asia supersite, Zhenbeitai, China. Journal of Geophysical Research: Atmospheres, 108(D23).
  2. Chu, D.A., Y.J. Kaufman, G., Zibordi, J.D. Chern, J. Mao, C. Li, and B.N. Holben, 2003. Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer(MODIS), Journal of Geophysical Research: Atmospheres, 108, 4661, doi:10.1029/2002JD003179.
  3. Fernald, F. G., 1984. Analysis of atmospheric lidar observations: Some comments, Applied Optics, 23: 653-659. https://doi.org/10.1364/AO.23.000653
  4. Gupta, P., S.A. Christopher, J. Wang, R. Gehrig, Y.C. Lee, and N. Kumar, 2006. Satellite remote sensing of particulate matter and air quality assessment over global cities, Atmospheric Environment, 40(30): 5880-5892. https://doi.org/10.1016/j.atmosenv.2006.03.016
  5. Gupta, P., S.A. Christopher, M.A. Box, and G.P. Box, 2007. Multi year satellite remote sensing of particulate matter air quality over Sydney, Australia. International Journal of Remote Sensing, 28(20), 4483-4498. https://doi.org/10.1080/01431160701241738
  6. Holben, B.N., T.F. Eck, I. Slutsker, D. Tanre, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y.J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnow, 1998. AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66(1): 1-16. https://doi.org/10.1016/S0034-4257(98)00031-5
  7. IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  8. Kim, K., K.H. Lee, J.I. Kim, Y., Noh, D.H. Shin, S.K. Shin, Dasom Lee, Jhoon, Kim, Young J. Kim, and C.H. Song, 2016. Estimation of surfacelevel PM concentration from satellite observation taking into account the aerosol vertical profiles and hygroscopicity. Chemosphere, 143: 32-40. https://doi.org/10.1016/j.chemosphere.2015.09.040
  9. Kim, K.W., Y.J. Kim, and S.J. Oh, 2001. Visibility impairment during Yellow Sand periods in the urban atmosphere of Kwangju, Korea, Atmospheric Environment, 35: 5157-5167. https://doi.org/10.1016/S1352-2310(01)00330-2
  10. Kacenelenbogen, M., J.-F. Leon, I. Chiapello, D., Tanre, 2006. Characterisation of aerosol pollution events in France using ground-based and POLDER-2 satellite data. Atmospheric Chemistry and Physics, 6: 4843-4849. https://doi.org/10.5194/acp-6-4843-2006
  11. Koelemeijer, R.B.A., M. Schaap, R.M.A. Timmermans, C.D. Homan, J. Matthijsen, J. van de Kassteele, and P.J.H., Builtjes, 2006. Mapping aerosol concentrations and optical thickness over Europe - PARMA final report, MNP report 555034001, Bilthoven, the Netherlands.
  12. Lee, K.H. and Y.J. Kim, 2010. Satellite remote sensing of Asian aerosols: a case study of clean, polluted and dust storm days, Atmospheric Measurement Technique, 3: 1771-1784, doi:10.5194/amt-3-1771-2010
  13. Seo, S., J. Kim, H. Lee, U. Jeong, W. Kim, B.N. Holben, S.-W. Kim, C.H. Song, and J.H. Lim, 2015. Estimation of PM 10 concentrations over Seoul using multiple empirical models with AERONET and MODIS data collected during the DRAGON-Asia campaign. Atmospheric Chemistry and Physics, 15(1): 319-334. https://doi.org/10.5194/acp-15-319-2015
  14. van Donkelaar, A., R.V. Martin, and R.J. Park, 2006. Estimating ground-level $PM_{2.5}$ using aerosol optical thickness determined from satellite remote sensing, Journal of Geophysical Research: Atmospheres, 111, D21201, doi:10.1029/2005JD006996.
  15. Wang J. and S.A., Christopher, 2003. Intercomparison between satellite-derived aerosol optical thickness and $PM_{2.5}$ mass: implications for air quality studies, Geophysical Research Letters, 30(21): 2095, doi:10.1029/2003GL018174.
  16. Welton, E.J., J.R. Campbell, T.A. Berkoff, J.D. Spinhirne, S.C. Tsay, B. Holben, and M. Shiobara, 2002. The Micro-pulse Lidar Network(MPL-Net). In: Lidar Remote Sensing in Atmospheric and Earth Sciences: 21st Int. Laser Radar Conference(ILRC21), Quebec, Canada, pp. 285-288.

Cited by

  1. Detection and Classification of Major Aerosol Type Using the Himawari-8/AHI Observation Data vol.34, pp.3, 2018, https://doi.org/10.5572/KOSAE.2018.34.3.493
  2. DRAGON-KORUS-AQ 기간 중 서해안 지역 에어로졸 광학 두께 고도별 PSCF 분석 vol.33, pp.1, 2016, https://doi.org/10.5572/kosae.2017.33.1.019
  3. Assessing the Impacts of Errors in Coarse Scale Data on the Performance of Spatial Downscaling: An Experiment with Synthetic Satellite Precipitation Products vol.33, pp.4, 2016, https://doi.org/10.7780/kjrs.2017.33.4.10
  4. Spatial Gap-Filling of Hourly AOD Data from Himawari-8 Satellite Using DCT (Discrete Cosine Transform) and FMM (Fast Marching Method) vol.37, pp.4, 2016, https://doi.org/10.7780/kjrs.2021.37.4.8