Browse > Article
http://dx.doi.org/10.7780/kjrs.2016.32.5.2

Estimation of surface-level PM2.5 concentration based on MODIS aerosol optical depth over Jeju, Korea  

Kim, Kwanchul (Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology)
Lee, Dasom (Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology)
Lee, Kwang-yul (Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology)
Lee, Kwonho (The Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University)
Noh, Youngmin (International Environmental Research Center, Gwangju Institute of Science and Technology)
Publication Information
Korean Journal of Remote Sensing / v.32, no.5, 2016 , pp. 413-421 More about this Journal
Abstract
In this study, correlations between Moderate Resolution Imaging Spectroradiometer (MODIS) derived Aerosol Optical Depth (AOD) values and surface-level $PM_{2.5}$ concentrations at Gosan, Korea have been investigated. For this purpose, data from various instruments, such as satellite, sunphotometer, Optical Particle Counter (OPC), and Micro Pulse Lidar (MPL) on 14-24 October 2009 were used. Direct comparison between sunphotometer measured AOD and surface-level $PM_{2.5}$ concentrations showed a $R^2=0.48$. Since the AERONET L2.0 data has significant number of observations with high AOD values paired to low surface-level $PM_{2.5}$ values, which were believed to be the effect of thin cloud or Asian dust. Correlations between MODIS AOD and $PM_{2.5}$ concentration were increased by screening thin clouds and Asian dust cases by use of aerosol profile data on Micro-Pulse Lidar Network (MPLNet) as $R^2$ > 0.60. Our study clearly demonstrates that satellite derived AOD is a good surrogate for monitoring atmospheric PM concentration.
Keywords
$PM_{2.5}$; MODIS; AERONET; Sunphotometer; MPLNet; MPL; OPC;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alfaro, S. C., L. Gomes, J. L. Rajot, S. Lafon, A. Gaudichet, B. Chatenet, M. Maille, G. Cautenet, F. Lasserre, and X. Y. Zhang, 2003. Chemical and optical characterization of aerosols measured in spring 2002 at the ACE-Asia supersite, Zhenbeitai, China. Journal of Geophysical Research: Atmospheres, 108(D23).
2 Chu, D.A., Y.J. Kaufman, G., Zibordi, J.D. Chern, J. Mao, C. Li, and B.N. Holben, 2003. Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer(MODIS), Journal of Geophysical Research: Atmospheres, 108, 4661, doi:10.1029/2002JD003179.   DOI
3 Fernald, F. G., 1984. Analysis of atmospheric lidar observations: Some comments, Applied Optics, 23: 653-659.   DOI
4 Gupta, P., S.A. Christopher, J. Wang, R. Gehrig, Y.C. Lee, and N. Kumar, 2006. Satellite remote sensing of particulate matter and air quality assessment over global cities, Atmospheric Environment, 40(30): 5880-5892.   DOI
5 Gupta, P., S.A. Christopher, M.A. Box, and G.P. Box, 2007. Multi year satellite remote sensing of particulate matter air quality over Sydney, Australia. International Journal of Remote Sensing, 28(20), 4483-4498.   DOI
6 Holben, B.N., T.F. Eck, I. Slutsker, D. Tanre, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y.J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnow, 1998. AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66(1): 1-16.   DOI
7 IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
8 Kim, K., K.H. Lee, J.I. Kim, Y., Noh, D.H. Shin, S.K. Shin, Dasom Lee, Jhoon, Kim, Young J. Kim, and C.H. Song, 2016. Estimation of surfacelevel PM concentration from satellite observation taking into account the aerosol vertical profiles and hygroscopicity. Chemosphere, 143: 32-40.   DOI
9 Kim, K.W., Y.J. Kim, and S.J. Oh, 2001. Visibility impairment during Yellow Sand periods in the urban atmosphere of Kwangju, Korea, Atmospheric Environment, 35: 5157-5167.   DOI
10 Kacenelenbogen, M., J.-F. Leon, I. Chiapello, D., Tanre, 2006. Characterisation of aerosol pollution events in France using ground-based and POLDER-2 satellite data. Atmospheric Chemistry and Physics, 6: 4843-4849.   DOI
11 Koelemeijer, R.B.A., M. Schaap, R.M.A. Timmermans, C.D. Homan, J. Matthijsen, J. van de Kassteele, and P.J.H., Builtjes, 2006. Mapping aerosol concentrations and optical thickness over Europe - PARMA final report, MNP report 555034001, Bilthoven, the Netherlands.
12 Lee, K.H. and Y.J. Kim, 2010. Satellite remote sensing of Asian aerosols: a case study of clean, polluted and dust storm days, Atmospheric Measurement Technique, 3: 1771-1784, doi:10.5194/amt-3-1771-2010   DOI
13 Welton, E.J., J.R. Campbell, T.A. Berkoff, J.D. Spinhirne, S.C. Tsay, B. Holben, and M. Shiobara, 2002. The Micro-pulse Lidar Network(MPL-Net). In: Lidar Remote Sensing in Atmospheric and Earth Sciences: 21st Int. Laser Radar Conference(ILRC21), Quebec, Canada, pp. 285-288.
14 Seo, S., J. Kim, H. Lee, U. Jeong, W. Kim, B.N. Holben, S.-W. Kim, C.H. Song, and J.H. Lim, 2015. Estimation of PM 10 concentrations over Seoul using multiple empirical models with AERONET and MODIS data collected during the DRAGON-Asia campaign. Atmospheric Chemistry and Physics, 15(1): 319-334.   DOI
15 van Donkelaar, A., R.V. Martin, and R.J. Park, 2006. Estimating ground-level $PM_{2.5}$ using aerosol optical thickness determined from satellite remote sensing, Journal of Geophysical Research: Atmospheres, 111, D21201, doi:10.1029/2005JD006996.   DOI
16 Wang J. and S.A., Christopher, 2003. Intercomparison between satellite-derived aerosol optical thickness and $PM_{2.5}$ mass: implications for air quality studies, Geophysical Research Letters, 30(21): 2095, doi:10.1029/2003GL018174.   DOI