DOI QR코드

DOI QR Code

Instantaneous Monitoring of Pollen Distribution in the Atmosphere by Surface-based Lidar

지상 라이다를 이용한 대기중 꽃가루 분포 실시간 모니터링

  • Noh, Young-Min (Department of Environmental Science & Engineering, Gwangju Institute of Science & Technology) ;
  • Mueller, Detlef (Department of Environmental Science & Engineering, Gwangju Institute of Science & Technology) ;
  • Lee, Kwon-Ho (Department of Satellite Geoinformatics Engineering, Kyungil University) ;
  • Choi, Young-Jean (Applied Meteorology Research Lab. National Institute of Meteorological Research) ;
  • Kim, Kyu-Rang (Applied Meteorology Research Lab. National Institute of Meteorological Research) ;
  • Lee, Han-Lim (Department of Atmospheric Sciences, Yonsei University) ;
  • Choi, Tae-Jin (Korea Polar Research Institute)
  • 노영민 (광주과학기술원 환경공학과) ;
  • ;
  • 이권호 (경일대학교 위성정보공학과) ;
  • 최영진 (응용기상연구과 국립기상연구소) ;
  • 김규랑 (응용기상연구과 국립기상연구소) ;
  • 이한림 (연세대학교 대기과학과) ;
  • 최태진 (극지연구소)
  • Received : 2011.11.01
  • Accepted : 2011.12.23
  • Published : 2012.02.29

Abstract

The diurnal variation in pollen vertical distributions in the atmosphere was observed by a surface-based lidar remote sensing technique. Aerosol extinction coefficient and depolarization ratio at 532 nm were obtained from lidar measurements in spring ($4^{th}$ May - $2^{nd}$ June) 2009 at Gwangju Institute of Science & Technology (GIST) located in Gwangju, Korea ($35.15^{\circ}E$, $126.53^{\circ}N$). Unusual variations of depolarization ratio were observed for six days from $4^{th}$ to $9^{th}$ May. Depolarization ratios varied from 0.08 to 0.14 were detected at the low altitude in the morning. The altitude with those high depolarization ratios was increased up to 1.5 - 2.0 km at the time interval between 12:00 and 14:00 LT and then decreased. The temporal variations in high values of depolarization ratios from lidar measurements show good agreement in patterns with the sampled pollen concentrations measured using the Burkard trap sampler. This study demonstrates that the pollen distribution data obtained by lidar measurements can be a useful tool for investigating spatial and temporal characteristic of pollen particles.

대기중의 꽃가루를 원격 탐사 기술을 이용하여 실시간 연속적으로 수행한 연구는 현재까지 전무하다. 본 연구는 지상 라이다 원격 탐사 기술을 이용하여 꽃가루 대기 분포의 일변화를 실시간 연속적으로 모니터링 하였다. 지상 라이다를 이용한 관측은 5월 4일부터 6월 2일까지 광주과학기술원에서 지속적으로 수행되었다. 라이다 데이터의 소산계수 분석을 통하여 대기 에어러솔의 분포를 확인하고 편광소멸도를 이용하여 입자의 비구형성을 확인하였다. 관측 기간 중 5월 4일부터 9일까지 일출 이후 09시경부터 편광소멸도 값이 0.08에서 0.14로 높은 값이 지표면 가까이부터 관측되기 시작하여 정오경에 1.5 - 2.0 km까지 고도가 증가하다 이후 감소하기 시작하여 일출시간(18시 이후)에 사라지는 현상이 관측되었다. 이 때 일별 꽃가루 농도는 $1,000m^{-3}$ 이상의 높은 농도를 보여 편광소멸도의 증가가 꽃가루로부터 유발된 것임을 알 수 있었다. 라이다 편광소멸도 관측과 기상 자료와의 비교분석을 통하여 수목류가 방출한 꽃가루는 지표면 기온이 상승하고 대기 중 상대습도가 낮아지는 낮 시간 동안 대기경계층 고도까지 상승하지만 시간이 지남에 따라 기온의 하강과 상대습도의 증가, 그리고 풍속이 감소하면서 꽃가루의 관측 고도는 낮아져 늦은 오후 시간대부터는 꽃가루가 대기 중에서 사라지는 일정한 일변화 형태를 보임을 파악할 수 있었다.

Keywords

References

  1. 박기준, 김헌애, 김규랑, 오재원, 이선영, 최영진, 2008. 한반도 지역에서 관측된 꽃가루 농도 특성에 관한 연구, 한국농림기상학회지, 10(4): 167-176. https://doi.org/10.5532/KJAFM.2008.10.4.167
  2. 오재원, 2009. 대기 중 알레르기 화분(꽃가루) 농도 예보제 개발, 대한의사협회지, 52(6): 579-591. https://doi.org/10.5124/jkma.2009.52.6.579
  3. Bostock, J., 1819. Case of a Periodical affection of the eyes and chest, Medico-Chirurgical Transactions, 10: 161-165.
  4. Curtis, J.D. and N.R. Lersten, 1995. Anatomical aspects of pollen release from staminate flowers of Ambrosia trifida (Asteraceae), International Journal of Plant Sciences, 156: 29-36. https://doi.org/10.1086/297225
  5. Damialis, A., D. Gioulekas, C. Lazopoulou, C. Balafoutis, and D. Vokou, 2005. Transport of airborne pollen into the city of Thessaloniki: the effects of wind direction, speed and persistence, International Journal of Biometeorology, 49: 139-145. https://doi.org/10.1007/s00484-004-0229-z
  6. Durham, O.C., 1944. The volumetric incidence of atmospheric allergens, The Journal of allergy, 455-461.
  7. Esch, R.E. and R.K. Bush, 2003. Aerobiology of outdoor allergens, In Adkinson NF Jr, Yunginger JW.
  8. Hjelmroos, M., 1991. Long-distance transport of Betula pollen grains and allergic symptoms, Aerobiologia, 8: 231-236.
  9. Klett, J.D., 1981. Stable analytical inversion solution for processing lidar returns, Applied Optics, 20 (2): 211-220. https://doi.org/10.1364/AO.20.000211
  10. Lewis, W.H., P. Vinay, and V.E. Zenger, 1983. Airborne and allergenic pollen of North America, The Johns Hopkins University Press, Baltimore & London.
  11. Mandrioli, P., M.G. Negrini, G. Cesari, and G. Morgan, 1984. Evidence for long range transport of biological and anthropogenic aerosol particles in the atmosphere, Grana 23: 43-53. https://doi.org/10.1080/00173138409428876
  12. Niklas, J.K., 1985. The Aerodynamics of wind pollination, The Botanical Review, 51: 328-386. https://doi.org/10.1007/BF02861079
  13. Noh, Y.M., Y.J. Kim, B.C. Choi, and T. Murayama, 2007. Aerosol Lidar Ratio Characteristics Measured by a Multi-Wavelength Raman Lidar System at Anmyeon Island, Korea, Atmospheric Research, doi:10.1016/j.atmosres.2007.03.006.
  14. Noh, Y.M., Y.J. Kim, and D. Muller, 2008. Seasonal characteristics of lidar ratio measured with a Raman lidar at Gwangju, Korea in spring and autumn, Atmospheric Environment, 42: 2208-2224. https://doi.org/10.1016/j.atmosenv.2007.11.045
  15. Pande, G.K., P. Pakrash, and M.A. Hassam, 1972. Floral biology of barley (Hordeum vulgare L.), The Indian Journal of Agricultural Sciences, 48: 697-703.
  16. Potter, P.C. and A. Cadman, 1996, Pollen allergy in South Africa, Clinical & Experimental Allergy, 26: 1347-1354. https://doi.org/10.1111/j.1365-2222.1996.tb00535.x
  17. Raynor, G.S., J.V. Hayes, and E.C. Ogden, 1974. Mesoscale transport and dispersion of airborne pollens, Journal of applied meteorology, 13: 87-95. https://doi.org/10.1175/1520-0450(1974)013<0087:MTADOA>2.0.CO;2
  18. Raynor, G.S., J.V. Hayes, and E.C. Ogden, 1975. Particulate dispersion from source within a forest, Boundary-Layer meteorology, 9: 257-277. https://doi.org/10.1007/BF00230770
  19. Sakai, T., T. Nagai, M. Nakazato, Y. Mano, T. Murayama, 2003. Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and watervapor mixing ratio over Tsukuba, Applied Optics, 42 (36): 7103-7116. https://doi.org/10.1364/AO.42.007103
  20. Sassen, K., 2008. Boreal tree pollen sensed by polarization lidar: Depolarizing biogenic chaff, Geophysical Research Letters, 35, L18810, doi: 10.1029/2008GL035085.
  21. Sofiev, M., P. Siljamo, H. Ranta, and A. Rantio-Lehtimaki, 2006. Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study, International Journal of Biometeorology. 50: 392-402. https://doi.org/10.1007/s00484-006-0027-x
  22. Stach, A., M. Smith, C.A. Skjoth, and J. Brandt, 2007. Examining Ambrosia pollen episodes at Poznan (Poland) using back-trajectory analysis, International Journal of Biometeorology, 51: 275-286. https://doi.org/10.1007/s00484-006-0068-1
  23. Vazquez, L.M., C. Galn, and E. Domnguez-Vilches, 2003. Influence of meteorological parameters on olea pollen concentrations in C_rdoba (South-western Spain), International Journal of Biometeorology, 48: 83-90. https://doi.org/10.1007/s00484-003-0187-x
  24. WMO, 2001. Climate Change 2001, IPCC, pp. 203.

Cited by

  1. 3-D Perspectives of Atmospheric Aerosol Optical Properties over Northeast Asia Using LIDAR on-board the CALIPSO satellite vol.30, pp.5, 2014, https://doi.org/10.7780/kjrs.2014.30.5.2
  2. Measurement of Aerosols and Ice Clouds Using Ellipsometry Lidar vol.26, pp.1, 2015, https://doi.org/10.3807/KJOP.2015.26.1.009