DOI QR코드

DOI QR Code

Fast Detection of Power Lines Using LIDAR for Flight Obstacle Avoidance and Its Applicability Analysis

비행장애물 회피를 위한 라이다 기반 송전선 고속탐지 및 적용가능성 분석

  • Lee, Mijin (Dept. of Geoinformatics, University of Seoul) ;
  • Lee, Impyeong (Dept. of Geoinformatics, University of Seoul)
  • Received : 2014.01.10
  • Accepted : 2014.02.28
  • Published : 2014.02.28

Abstract

Power lines are one of the main obstacles causing an aircraft crash and thus their realtime detection is significantly important during flight. To avoid such flight obstacles, the use of LIDAR has been recently increasing thanks to its advantages that it is less sensitive to weather conditions and can operate in day and night. In this study, we suggest a fast method to detect power lines from LIDAR data for flight obstacle avoidance. The proposed method first extracts non-ground points by eliminating the points reflected from ground surfaces using a filtering process. Second, we calculate the eigenvalues for the covariance matrix from the coordinates of the generated non-ground points and obtain the ratio of eigenvalues. Based on the ratio of eigenvalues, we can classify the points on a linear structure. Finally, among them, we select the points forming horizontally long straight as power-line points. To verify the algorithm, we used both real and simulated data as the input data. From the experimental results, it is shown that the average detection rate and time are 80% and 0.2 second, respectively. If we would improve the method based on the experiment results from the various flight scenario, it will be effectively utilized for a flight obstacle avoidance system.

송전선은 항공사고를 야기하는 대표적인 장애물로써 인지되며, 비행 중 충돌회피를 위해 송전선의 실시간 탐지는 아주 중요하다. 최근 들어 이러한 비행장애물 회피를 위해 기상조건에 영향을 덜 받으며 주야에 관계없이 데이터 획득이 가능한 라이다의 활용이 증가하고 있다. 이에 본 연구에서는 라이다 데이터를 이용하여 비행장애물 회피를 위해 송전선을 고속으로 탐지하는 방법을 개발하였다. 제안된 방법은 먼저 지표면에서 반사된 점을 필터링 과정을 통해 제거하여 비지면점을 추출하고, 이중에서 분산 행렬의 고유값 비율을 이용하여 선형적으로 분포하는 점들을 추출하고, 마지막으로 송전탑(기둥)이나 굴뚝같이 수직방향으로 선형적으로 분포하는 점들이나 길이가 작은 선형점들을 제거한다. 구현된 알고리즘의 성능을 검증하기 위해 송전선이 포함된 영역에서 취득된 실측 및 시뮬레이션 데이터에 적용하였다. 탐지성능은 약 80%정도로 분석되었고, 처리시간은 평균 0.2초가 소요되었다. 향후 제시된 방법을 다양한 시험환경에 대해 실험을 수행하여 개선한다면, 비행장애물 회피용 시스템에 효과적으로 활용될 것을 판단된다.

Keywords

References

  1. Axelsson, P, 2000, DEM Generation from Laser Scanner Data using Adaptive TIN model, Proc. of 2000 International Archives of Photogrammetry and Remote Sensing, 4 (2000): 111-118.
  2. Cho, W, S; Lee, Y, J; Jwa, Y, S. 2003, Automatic Extraction of Buildings using Aerial Photo and Airborne LIDAR Data, Korean Journal of Remote Sensing, 307-317. https://doi.org/10.7780/kjrs.2003.19.4.307
  3. Clode, S ; Rottensteiner, F. 2005, Classification of Tree and Powerlines from medium resolution Airborne Laserscanner data in Urban Environments, APRS Workshop on Digital Image Computing, 97-102.
  4. Jeon, W, G; Choi, B, G. 2013, A Study on the Automatic Detection of Railroad Power Lines Using LiDAR Data and RANSAC Algorithm, Korean Society of Surveying Geodesy Photogrammetry and Cartography, 31(4):331-339. https://doi.org/10.7848/ksgpc.2013.31.4.331
  5. Jwa, Y.; Sohn, G; Kim, H. B. 2009, Automatic 3d powerline reconstruction using airborne lidar data. IAPRS, 38(2004), 105-110.
  6. Kang, J, W; Kwak, Y G. 2004, Analysis of Obstacle Awareness and Collision Avoidance for UAV Using Radar Sensor System, The Korean society for Aeronautical & Space Sciences, 845-848.
  7. Kim, D. Y; Kang, J, H. 2010, Power Line Detection of Arial Images Using Hough Transform, The Korean Institute of Communications and Information Sciences, 171-179.
  8. Kim, S, J; Lee, I, P. 2010, Simulation Based Performance Assessment of a LIDAR Data Segmentation Algorithm, The Korean Society for GeoSpatial Information System, 5(2):119-129.
  9. Kim, S, J; Lee, I, P. 2011, Modeling of Geiger-mode Imaging LADAR Sensor, Journal of the Korea Institute of Military Science and Technology, 1001-1004.
  10. Lee, M, J; Kim, S, J; Lee, I, P. 2013, Extraction of Power Line Points Based on Eigenvalues of LIDAR Data, Conference of The Korean Society for GeoSpatial Information System. 81-82.
  11. McLaughlin, R. A. 2006, Extracting transmission lines from airborne LIDAR data. Geoscience and Remote Sensing Letters, IEEE, 3(2), 222-226. https://doi.org/10.1109/LGRS.2005.863390
  12. Melzer, T., & Briese, C. (2004, June). Extraction and modeling of power lines from als point clouds. In Proceedings of 28th Workshop (pp. 47-54). Hagenberg, Austria.
  13. Open Topography(http://www.opentopography.org).
  14. Aviation and Railway Accident Investigation Board (http://araib.molit.go.kr/intro.do).