• Title/Summary/Keyword: 지구과학 교육

Search Result 1,219, Processing Time 0.03 seconds

Analysis of Research in Earth Science at the Science Fair Using the Semantic Network Analysis: Focus on the Last 21 Years (2000-2020) (언어네트워크를 이용한 과학전람회 지구과학 부문 탐구주제 분석: 최근 21년(2000-2020년)을 중심으로)

  • Kyu-Seong Cho;Duk-Ho Chung;Dong-Gwon Jeong;Cheon-ji Kang
    • Journal of the Korean earth science society
    • /
    • v.44 no.1
    • /
    • pp.62-78
    • /
    • 2023
  • The purpose of this study is to analyze the field of Earth science at a science fair. For this purpose, 566 pieces of data spanning 21 years (2000 to 2020), acquired from entries in the Earth Science section on the science fair website, were analyzed using the semantic network method. As a result, geoscience topics have been actively explored in works submitted for the Earth Science section of the science fair. Fossils from the Cretaceous period of the Mesozoic Era were particularly predominant. Together with these, keywords corresponding to astronomy, space science, and atmospheric science formed a small-scale network. Astronomy and space science mainly dealt with the dynamic characteristics of asteroids, Venus, and Jupiter. Other subjects included the solar system, sunspots, and lunar phases. Atmospheric science has focused on atmospheric physics, atmospheric observation and analysis technology, atmospheric dynamics, air quality monitoring, while marine science has been limited to physical oceanography and geologic oceanography. This study, is expected to help select Earth Science topics and conduct inquiry activities in schools.

An Analysis on High School Students' Perceptions of Earth Science Scientists (지구과학자에 대한 고등학생들의 인식 분석)

  • Kim, Yun-Ji
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.7 no.2
    • /
    • pp.159-168
    • /
    • 2014
  • This study was designed to 10 questions as development of GAP program for ninety high school students(each student of 30 with achievement as high, medium, and low categories), it was analyzed the perception of Earth scientist. High school students have a positive perception about a course in Earth science, but they have lack of knowledge about Earth scientist as a career man, and they can't recognize Earth scientist as a career. A failure of learning of Earth science for Students with low level achievement leads to a negative perception about Earth scientist and disconnection to future career. School education should provide an opportunity to encounter Earth scientist for students and it is badly in need of effort to connect to the job training program.

A Study on the Change of the Perception of Students' Computational Thinking and Scientific Attitudes in Earth Science Classes Using a Block-based Coding (블록형 코딩프로그램을 활용한 지구과학 수업에서 학생들의 컴퓨팅 사고력에 대한 인식 및 과학적 태도 변화 연구)

  • Han, Shin;Kim, Hyoungbum
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.12 no.2
    • /
    • pp.131-140
    • /
    • 2019
  • In this study, a block-base coding that could develop computing thinking was applied to Earth science teaching and learning to identify how the perception of computational thinking and scientific attitude was changed as part of creativity education. Based on the results of the study, the conclusions are as follows: First, an Earth science education program was developed using a block-based coding for elementary school students. The 12-hour program was designed for inquiry activities to encourage students to engage in various thinking by providing them with activity-oriented problems. Second, the Earth science education program using a block-based coding showed significant results in confidence in the use of a computer program, integrated learning with a computer, computational thinking, and problem-solving factors with computational thinking. Third, the Earth science education program using block-based coding showed significant differences in the categories of curiosity, criticism, cooperation, persistence, and creativity. It could be judged that it was effective for students in the process of questioning and trying to solve the problem themselves.

An Analysis of Korean Middle School Students' Achievement of Earth Science in TIMSS-R (제3차 수학.과학 성취도 국제 비교 반복 연구의 지구과학 성취도 분석)

  • Myeong, Jeon-Ok;Hong, Mi-Young
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.3
    • /
    • pp.649-659
    • /
    • 2002
  • The purpose of this study was to analyse students' achievement of 'Earth Science' in the Third International Mathematics and Science Study-Repeat(TIMSS-R), which was performed in 1999 with 38 nations participating. Korean 8th grade students' achievement of 'Earth Science' was compared with those of other countries and other content areas in science. Average percent correct of items in each subcategory was also analysed. Most of the 'Earth Science' topics were included in the intended curricula of Korea; they were taught to most of the students in science classes. Korean students ' average scale score of 'Earth Science' was significantly higher than the international average, but in comparison with other science content areas, achievement of 'Earth Science' was relatively low. The teachers' confidence in teaching earth science was lower than their confidence in teaching other science areas. The paper presents the results of item analysis and their implications for science education.

Analysis and Evaluation of the Earth Science Content Relevance in the 7th National Science Curriculum (제7차 과학과 교육과정 지구과학 내용의 적정성 분석 및 평가)

  • Lee, Yang-Rak;Kwak, Young-Sun;Kim, Dong-Young
    • Journal of the Korean earth science society
    • /
    • v.26 no.8
    • /
    • pp.759-770
    • /
    • 2005
  • The purpose of this study is to examine the Earth science content relevance of the 7th national science curriculum. For this purpose, we (1) analyzed science curriculum or content standards of Korea, California, England and Japan, (2) compared science textbooks of Korea and Japan, (3) conducted a nationwide survey to gather opinions from students, teachers, professors and textbook authors about the relevance of the science curriculum and textbooks. According to the results, the Earth science contents of the 7th national science curriculum were not appropriate in terms of the objectives of science curriculum and the needs of students and society. The main reasons include the equal division among physics, chemistry, biology and earth science, iack of connection due to fractionation of units, overly strict application of spiral curriculum, and redundant amount of activities and concepts to cover in the textbook. Major suggestions fir securing the relevance of Earth science contents are as follows: First, the science contents and the size of units at each grade level should be determined according to the students' characteristics, not by equal portion rule. Second, the excessive overlapping and repetition of contents due to the spiral curriculum should be avoided. In addition, the number of activities should be reduced and the quality of required science activities should be improved. Third, to raise students' interest in Earth science, real-life applications and real-world Earth science contents should be emphasized including natural disasters, safety, universe and space exploration, and natural resources. Lastly, considering one of the relevance criteria is feasibility, supports for schools and science teachers are needed to realize the goal of the intended science curriculum.

Understandings on the Cycle as a substance and ESE (지구계 교육과 소재로서 순환에 대한 이해)

  • Kim, Yun-Ji;Jeong, Jin-Woo
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.8
    • /
    • pp.951-962
    • /
    • 2009
  • Examining research papers and other texts on the subject, this study summarizes previous studies, with focus on circulation as a subtopic of Earth Systems Education. In relation to the Earth Systems unit included in the revised 10th-grade science textbook, this study explains the meaning of Earth Systems and the basic concepts of Earth System Science. It surveys the origin and application of Earth Systems Education, which developed primarily in the U. S., and introduces its objectives, concepts, and communicated content. It also reviews the contents of Earth Systems Education adopted in the Korean school curriculum, and provides a comparative analysis of the content on circulation appearing in Earth Science I textbooks. Finally, it is proposed that an understanding among educators of Earth Systems and of its necessity as a subject of education is imperative for Earth Systems Education to become firmly established as a compulsory component of the national school curriculum.