• Title/Summary/Keyword: 주파수-전압 변환기

Search Result 245, Processing Time 0.031 seconds

LCD Backlight Drive Using The Piezoelectric Transformer (압전변압기를 이용한 LCD Backlight 구동)

  • 임성운;최연호;원철호;구본호;김이국
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.2
    • /
    • pp.28-33
    • /
    • 2003
  • The piezoelectric transformer converters electrical energy into mechanical energy, It is high efficiency and small size transformer for high output voltage. The piezoelectric transformer operates the resonance frequency and the output voltage waveform is close to sine wave. Therefore, it is suitable for driving the LCD backlight in the notebook computer. In this paper, we discussed about the inverter which os driving piezoelectric transformer by generating sine wave through LC resonance after converting input DC voltage to the gate signal of FET. As the result of experiments, it was showed that the resonance frequency and voltage gain of the piezoelectric transformer was proportional to the load variation, and voltage gain was independent of the input voltage variation.

DC-DC Converter for Low-Power Power Management IC (저-전력 전력 관리 회로를 위한 DC-DC 변환기)

  • Jeon, Hyeondeok;Yun, Beomsu;Choi, Joongho
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.174-179
    • /
    • 2018
  • In this paper, design of high-efficiency DC-DC converter is presented for low-power PMIC (power management integrated circuit). As PMIC technologies for IoT and wearable devices have been continuously improved, high-efficiency energy harvesting schemes should be essential. Since the supply voltage resulting from energy harvesting is low and widely variable, design techniques to achieve high efficiency over a wide input voltage range are required. To obtain a constant switching frequency for wide input voltage range, frequency compensation circuit using supply-voltage variation sensing circuit is included. In order to obtain high efficiency performance at very low-power condition, accurate burst-mode control circuit was adopted to control switching operations. In the proposed DC-DC buck converter, output voltage is set to be 0.9V at the input voltage of 0.95~3.3V and maximum measured efficiency is up to 78% for the load current of 180uA.

Stacked Interleaved Buck DC-DC Converter With 50MHz Switching Frequency (Stacked Interleaved 방식의 50MHz 스위칭 주파수의 벅 변환기)

  • Kim, Young-Jae;Nam, Hyun-Seok;Ahn, Young-Kook;Roh, Jeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.6
    • /
    • pp.16-24
    • /
    • 2009
  • In this paper, DC-DC buck converter with on-chip filter inductor and capacitor is presented. By operating at high switching frequency of 50MHz with stacked interleaved topology, we reduced inductor and capacitor sizes compared to previously published DC-DC buck converters. The proposed circuit is designed in a standard $0.5{\mu}m$ CMOS process, and chip area is $9mm^2$. This circuit operated at the input voltage of $3{\sim}5V$ range, the maximum load current of 250mA, and the maximum efficiency of 71%.

Design of an 8-bit 100KSPS Cyclic Type CMOS A/D Converter with 1mW Power Consumption (1mW의 전력소모를 갖는 8-bit 100KSPS Cyclic 구조의 CMOS A/D 변환기)

  • Lee, Jung-Eun;Song, Min-Kyu
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.9
    • /
    • pp.13-19
    • /
    • 1999
  • This paper describes a design of an 8-bit 100KSPS 1mW CMOS A/D Converter. Using a novel systematic offset cancellation technique, we reduce the systematic offset voltage of operational amplifiers. Further, a new Gain amplifier is proposed. The proposed A/D Converter is fabricated with a $0.6{\mu}m$ single-poly triple-metal n-well CMOS technology. INL and DNL is within ${\pm}1LSB$, and SNR is about 43dB at the sampling frequency of 100KHz. The power consumption is $980{\mu}W$ at +3V power supply.

  • PDF

An Automatic AC-DC Transfer Error Measurement System (교류-직류 변환오차 자동 측정시스템)

  • Kwon, Sung-Won;Cho, Y.M.;Kim, K.T.;Kang, J.H.;Park, Y.T.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.401-408
    • /
    • 1998
  • A dual-channel automatic ac-dc voltage transfer error measurement system in which the output voltages of two thermal voltage converters which are ac voltage standard are directly measured at the same time to reduce the output voltage drift is described. Forward-reverse measurement method by using a two-channel scanner is used to cancel the offset voltage of the voltmeters. The agreements of the 4-V TVC comparison results between other national standards institute and Korea Research Institute of Standards and Science were less than about ${\pm}2\;ppm$ in the frequency range of $40\;Hz{\sim}100\;kHz$, and were less than about ${\pm}4\;ppm$ at $200\;kHz{\sim}1\;MHz$. Measurement uncertainty is reduced significantly from ${\pm}4\;ppm$ of manual system to ${\pm}3\;ppm$ of new system(up to 100 kHz) typically and great increase in comparison efficiency has been achieved by this system.

  • PDF

Zigbee Transmitter Using a Low-Power High-Gain Up-Conversion Mixer (저 전력 고 이득 주파수 상향변환기를 이용한 Zigbee 송신기 설계)

  • Baik, Seyoung;Seo, Changwon;Jin, Ho Jeong;Cho, Choon Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.825-833
    • /
    • 2016
  • This paper introduces a direct-conversion CMOS RF transmitter for the IEEE 802.15.4 standard with a low-power high-gain up-conversion mixer designed in $0.18{\mu}m$ process. The designed RF DCT(Direct Conversion Transmitter) is composed of differential DAC(Digital to Analog Converter), passive low-pass filter, quadrature active mixer and drive amplifier. The most important characteristic in designing RF DCT is to satisfy the 2.4 GHz Zigbee standard in low power. The quadrature active mixer inside the proposed RF DCT provides enough high gain as well as sufficient linearity using a gain boosting technique. The measurement results for the proposed transmitter show very low power consumption of 7.8 mA, output power more than 0 dBm and ACPR (Adjacent Channel Power Ratio) of -30 dBc.

Active-RC Channel Selection Filter with 40MHz Bandwidth and Improved Linearity (개선된 선형성을 가지는 R-2R 기반 5-MS/s 10-비트 디지털-아날로그 변환기)

  • Jeong, Dong-Gil;Park, Sang-Min;Hwang, Yu-Jeong;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.149-155
    • /
    • 2015
  • This paper proposes 5-MS/s 10-bit digital-to-analog converter(DAC) with the improved linearity. The proposed DAC consists of a 10-bit R-2R-based DAC, an output buffer using a differential voltage amplifier with rail-to-rail input range, and a band-gap reference circuit for the bias voltage. The linearity of the 10-bit R-2R DAC is improved as the resistor of 2R is implemented by including the turn-on resistance of an inverter for a switch. The output voltage range of the DAC is determined to be $2/3{\times}VDD$ from an rail-to-rail output voltage range of the R-2R DAC using a differential voltage amplifier in the output buffer. The proposed DAC is implemented using a 1-poly 8-metal 130nm CMOS process with 1.2-V supply. The measured dynamic performance of the implemented DAC are the ENOB of 9.4 bit, SNDR of 58 dB, and SFDR of 63 dBc. The measured DNL and INL are less than +/-0.35 LSB. The area and power consumption of DAC are $642.9{\times}366.6{\mu}m^2$ and 2.95 mW, respectively.

Design of PLL Frequency Synthesizer with High Spectral Purity and Ultra-Fast Switching Speed (고순도 스펙트럼과 초고속 스위칭 속도의 PLL 주파수 합성기 설계)

  • 이현석;손종원;안병록;유흥균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.10B
    • /
    • pp.1464-1469
    • /
    • 2001
  • 본 논문에서는 디지털 하이브리드 위상고정루프(Digital Hybrid Phase-Locked Loop, DHPLL) 주파수 합성기 구조에서 고 순도 스펙트럼과 초고속 스위칭 속도를 위한 설계기술을 제안한다. D/A 변환기 출력으로 전압제어발진기(Voltage Controlled Oscillator, VCO)를 구동하는 개 루프(open-loop) 구성 방식과 기존 위상고정루프(Phase Locked Loop, PLL)의 폐 루프(closed-loop) 구성 방식을 혼합한 하이브리드 구조의 주파수 합성기를 고려하여, 시스템 변수(개 루프 대역과 위상 여유)와 성능 파라미터(정착시간, 위상 잡음, 그리고 최대 오버슈트(Max. overshoot)의 관계를 연구하였다. 그리고 이 관계를 통해 스펙트럼 순도와 스위칭 속도를 향상시키기 위한 최적의 3가지 설계방안을 제시한다. 컴퓨터 시뮬레이션 결과, 주파수 스위칭 과정에서 발생하는 최대 오버슈트가 0.0991%이고 완전 정상상태 도달시간은 0.288msec이다. offset 주파수 10KHz에서 위상 잡음은 -128.15dBc이다.

  • PDF

A Selective Current-supplying Parallel A/D Converter (선택적 전류공급구조를 갖는 병렬형 A/D 변환기)

  • Yang, Jung-Wook;Kim, Ook;Kim, Won-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.12
    • /
    • pp.1983-1993
    • /
    • 1993
  • A power-reduction technique for full-flash A/D converters is proposed. As the resolution of a full-flash A/D converter increases linearly, the number of comparators increases exponentially. The power dissipation is generally larger than other A/D converter architectures because there are many comparators, and they are operating continuously. In this proposed architecture, only a selected number of conmarators are made to operate instead of activating all the comparators of the full-flash A/D convertor. To determine whichcomparators should be activated, voltage levelfider circuits are used. A new clock driver is developed to suppress the dynamic glitch noise which is fed back into the input stage of the comparator. By using this clock driver, the glitch noise in the current source is reduced to one fourth of that when the typical clock signal is applied. The proposed architecture has been implemented with 1.2 m 5GHz BiCMOS technology. The maximum conversion speed is 350Msamples/s. and dissipates only 900mW.

  • PDF

A Dual-Mode Mixer for Multi-Band Radar Signal Reception (다중 대역 레이더 신호 수신을 위한 이중 모드 주파수 혼합기)

  • Go, Min-Ho;Kim, Hyoung-Joo;Nah, Sun-Phil;Kim, Jae-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.11
    • /
    • pp.1047-1054
    • /
    • 2013
  • In this paper, we propose a dual-mode mixer to have multi-band radar signal receiver to be compact. The proposed mixer using a anti-parallel diode is operated as a fundamental mixer or sub-harmonic mixer with respect to a control voltage. A fundamental mixer with a control voltage show a conversion loss of -10 dB, 1dB compression point of 2 dBm at X-band. On the other hand, it is performed as a sub-harmonic mixer with a conversion loss of -10 dB, 1 dB compression point of 2 dBm at K-band.