• Title/Summary/Keyword: 주기적 경계 조건

Search Result 82, Processing Time 0.027 seconds

Unsteady Aerodynamic Analysis of Helicopter Rotor Blades Using Diagonal Implicit Harmonic Balance Method (대각 내재적 조화균형법을 이용한 헬리콥터 로터 블레이드의 비정상 공력 해석)

  • Im, D.K.;Choi, S.I.;Park, S.H.;Kwon, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.543-549
    • /
    • 2011
  • In this paper, diagonal implicit harmonic balance method is applied to analyze helicopter rotor blade flow. Periodic boundary condition for Fourier coefficients is also applied in hover and forward flight condition. It is available enough to simulate the forward flight problem with only one rotor blade using the periodic boundary condition in frequency domain. In order to demonstrate present method Carodonna & Tung's rotor blades are used and the results are compared to time-accurate method and experimental data.

  • PDF

A Study on the Dynamic Stability of the Long Vertical Beam Subjected to the Parametric Excitation (파라메터 기진에 의한 긴수직보의 동적안정성에 관한 연구)

  • Y.C. Kim;J.S. Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.69-82
    • /
    • 1991
  • The dynamic stability of the long vertical beam subjected to the periodic axial load is investigated. As a solution method, the Galerkin's method is used to obtain a set of coupled Mathieu type equations. To obtain the stability chart, both the perturbation method and numerical method are used, and the results of the both methods are compared with each other. The stability regions for the various boundary conditions are obtained, Also the effects of the viscous damping, the mean tension and the multi-frequency parametric excitation are studied in detail.

  • PDF

Calculation of band structures and dispersion surfaces in two-dimensional photonic crystals using the FDTD method (FDTD 방법을 이용한 2차원 황자 크리스탈의 밴드 구조와 분산 곡선의 계산)

  • 홍수완;김창모;정교방
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.6
    • /
    • pp.479-484
    • /
    • 2001
  • The analysis of photonic band gaps and anomalous dispersion phenomena in photonic crystals requires understanding of band structures and dispersion surfaces. We show the results of the calculation of band structures and dispersion surfaces for a few two- dimensional lattices, using the finite-difference time-domain method with periodic boundary conditions. In addition, localized defect modes the exist within the band gap are computed by the same method.

  • PDF

Finite Element Vibration Analysis of Structures with Cyclic Symmetry using Discrete Fourier Transform (이산푸리에 변환을 이용한 순환대칭 구조물의 유한요소 진동 해석)

  • 김창부;김정락
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.221-226
    • /
    • 1995
  • 터빈 익렬, 펌프 익차, 원형 냉각탑, 치차 등과 같이 동일한 형상이 원주 방향으로 반복되어 있는 순환 대칭 구조물의 진동특성을 유한 요소법을 사용하여 해석하는 경우에 전체구조를 모델링하는 대신에 구조물을 동일한 형상의 부분구조로 분할하여 부분구조 한개만을 모델링하고 분할된 경계에서 적절한 경계조건을 부과하여 진동해석을 수행함으로서 컴퓨터 기억용량을 절감시키고 계산시간을 단축할 수 있는 방법이 널리 사용되고 있다. Orris and Petyt[1]는 부분구조의 양쪽 분할 경계면, 즉 연결 경계상에 있는 절점변위의 상관관계를 복소파동전파식을 이용해서 구하여 부분구조의 감소된 복소강성행렬 및 질량행렬을 만들고 실수부와 허수부를 분리하여 유한요소해석을 수행하는 방법을 제안하였다. 유한요소 프로그램 ANSYS[2]에서는 이와 같은 방법을 사용하고 있다. Thomas[3]는 순회 정규모드를 이용하였고, 참고문헌[4]에서는 순회행렬을 이용하였다. 또한 유한요소 프로그램 MSC/NASTRAN[5]에서는 푸리에 급수를 이용하고 유한요소 절점의 위치 및 변위를 원통 좌표계를 표현하여 순환대칭구조물의 유한요소해석을 수행할 수 있도록 되어있다. 본 논문에서는 순환 대칭구조물의 형상의 주기성과 순환성을 고려하여 이산퓨리에 변환을 이용함으로써 순환대칭구조물의 유한요소진동해석을 체계적으로 저용량의 컴퓨터에서 신속하고 정확하게 수행할 수 있는 방법을 제안하고자 한다.

  • PDF

Analysis of Electromagnetic Scattering by a Perfectly Conducting Strip Grating on Dielectric Multilayers (다층 유전체 위의 조기적인 도체 스트립 구조에 의한 전자파산란 해석)

  • 윤의중;양승인
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.2
    • /
    • pp.161-172
    • /
    • 1997
  • In this paper, electromagnetic scattering by a perfectly conducting strip grating on dielectric multilayers is analyzed for the normalized reflected and transmitted power by applying the Fourier-Galeakin moment method. The induced current density is expanded in a series of multiplication of chebyshev polynomials of the first kind and functions with appropriate edge boundary condition, the continuous condition of electromagnetic field is applied in the boundary planes. The confirm the validity of the proposed method, the nor- malized reflected and transmitted power obtained by varying the relative permittivity and thickness of each dielectric layers are evaluated and compared with those of the existing numerical method and a paper, and then the numerical results in this paper are in good agreement with those of the existing numerical method and the paper. The sharp variation position in the geometrically normalized reflected and transmitted power can be moved by the incident angle, grating period, and the relative permittivity and thickness of the dielectric multilayers, these sharp variation points which are called the Wood's anomaly of the Geome- trically normalized reflected power are observed as a main factor when the reflected powers of the higher order mode are transitted between propagating and evanescent modes, and the local minimum positions are slightly moved to the left hand direction in which grating period is getting small according to the increase of the relative permittivity of dielectric layers.

  • PDF

Analysis of Three-Dimensional Mixed Convection Flow About Uniformly Distributed Heat-Generating Blocks on a Conductive Wall (기판 위에 분포된 발열블록 주위의 3차원 혼합대류 열전달 해석)

  • Yun, Byeong-Taek;Choi, Do Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • The three-dimensional laminar mixed convection flow between the conductive printed circuit boards. on which the heat generating rectangular blocks are uniformly distributed, has been examined in the present study. The flow and heat-transfer characteristics are assumed to be pseudo periodic in the streamwise direction and symmetric in the cross-stream direction. Using an algorithm of SIMPLER, the continuity equation. the Navier-Stokes equations and the energy equation are solved numerically in the three-dimensional domain Inside the channel. The convective derivative terms are discretized by the QUICK scheme to accurately capture the flow field. The flow and the heat transfer characteristics are thoroughly examined for various Re and Gr.

Evaluation of Effective Orthotropic Creep Parameters for Perforated Sheets (다공질 박판의 유효 직교 이방성 크리프 파라미터 계산)

  • Chung Ilsup
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.79-88
    • /
    • 2005
  • Evaluating the effective properties of materials containing various types of in-homogeneities is an important issue in the analysis of structures composed of those materials. A simple and effective method for the purpose is to impose the periodic displacement boundary conditions on the finite element model of a unit cell. Their theoretical background is explained based on the purely kinematical relations in the regularly spaced in-homogeneity problems, and the strategies to implement them into the analysis and to evaluate the homogenized material constants are introduced. The creep behavior of a thin sheet with square arrayed rectangular voids is characterized, where the orthotropy is induced by the presence of the voids. The homogenization method is validated through the comparison of the analysis of detailed model with that of the simplified one with the effective parameters.

Characteristics of Harbor Resonance in Donghae Harbor (Part 2. Numerical Calculation) (동해항(東海港)의 부진동(副振動) 특성(特性)(2. 수치계산(數値計算)))

  • Jeong, Weon Mu;Jung, Kyung Tae;Chae, Jang Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.185-192
    • /
    • 1993
  • A numerical model has been used for the prediction of wave agitations in a harbor which are induced by the intrusion and transformation of incident waves. Based on linear wave theory a mild-slope equation has been used. A partial absorbing boundary condition has been used on solid boundary. Functional has been derived following Chen and Mei(l974)'s technique based on Hybrid Element Method which uses finite discretisation in the inner region and analytical solution of Helmholtz equation in the outer region. Final simultaneous equation has been solved using the Gaussian Elimination Method. Helmholtz natural period and second peak period of seiche in Donghae Harbor coincide very well with the results from numerical calculation. Computed amplification factors show good agreement, especially when the reflection coefficient on solid boundary is 0.99, with those of measurements.

  • PDF

Three-Dimensional Vibration Analysis of Solid and Hollow Hemispheres Having Varying Thickness (변두께를 갖는 두꺼운 반구형 쉘과 반구헝체의 3차원적 진동해석)

  • 심현주;장경호;강재훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.197-206
    • /
    • 2003
  • A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of solid and hollow hemispherical shells of revolution of arbitrary wall thickness having arbitrary constraints on their boundaries. Unlike conventional shell theories, which are mathematically two-dimensional (2-D), the present method is based upon the 3-D dynamic equations of elasticity. Displacement components μ/sub Φ/, μ/sub z/, and μ/sub θ/ in the meridional, normal, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in θ, and algebraic polynomials in the Φ and z directions. Potential (strain) and kinetic energies of the hemispherical shells are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies obtained by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Novel numerical results are presented for solid and hollow hemispheres with linear thickness variation. The effect on frequencies of a small axial conical hole is also discussed. Comparisons are made for the frequencies of completely free, thick hemispherical shells with uniform thickness from the present 3-D Ritz solutions and other 3-D finite element ones.

Level Set based Topological Shape Optimization of Phononic Crystals (음향결정 구조의 레벨셋 기반 위상 및 형상 최적설계)

  • Kim, Min-Geun;Hashimoto, Hiroshi;Abe, Kazuhisa;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.549-558
    • /
    • 2012
  • A topology optimization method for phononic crystals is developed for the design of sound barriers, using the level set approach. Given a frequency and an incident wave to the phononic crystals, an optimal shape of periodic inclusions is found by minimizing the norm of transmittance. In a sound field including scattering bodies, an acoustic wave can be refracted on the obstacle boundaries, which enables to control acoustic performance by taking the shape of inclusions as the design variables. In this research, we consider a layered structure which is composed of inclusions arranged periodically in horizontal direction while finite inclusions are distributed in vertical direction. Due to the periodicity of inclusions, a unit cell can be considered to analyze the wave propagation together with proper boundary conditions which are imposed on the left and right edges of the unit cell using the Bloch theorem. The boundary conditions for the lower and the upper boundaries of unit cell are described by impedance matrices, which represent the transmission of waves between the layered structure and the semi-infinite external media. A level set method is employed to describe the topology and the shape of inclusions. In the level set method, the initial domain is kept fixed and its boundary is represented by an implicit moving boundary embedded in the level set function, which facilitates to handle complicated topological shape changes. Through several numerical examples, the applicability of the proposed method is demonstrated.