• Title/Summary/Keyword: 절취사면

Search Result 115, Processing Time 0.032 seconds

Stability Evaluation of failed Slope in Gohan, Korea using Numerical Analysis (강원도 정선군 고한 지역 붕괴사면의 수치해석을 이용한 사면안정성 평가)

  • Jang, Hyun-Sic;Lee, Ju-Young;Seo, Yong-Seok;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.511-523
    • /
    • 2014
  • Limit equilibrium analysis and finite difference analysis were used to evaluate slope stability in the in Gohan, Korea, which is affected by large-scale tensile cracks and uplift. There is a thick colluvial layer in the study area and predicting ground behavior is problematic because the presence of clay makes it difficult to determine the strength parameters of the soil. Consequently, a numerical model able to reflect the collapse properties of the site was required that applied the modified boundary layer model and calculated the strength parameters using back analysis. The numerical simulation results that consider the strength parameter one does with the present situation the establishment of the pile is completed, and the simulation is able to asses ground stability in complex terrain in a reliable manner. Also the somewhat it judges with the fact that it will be able to provide the fundamental data which secures the stability of the segment where it is unstable.

The Slope Stability Establishment with P.C. Anchoring Method (P.C. Anchoring 공법을 활용한 사면안정대책)

  • 박철숙;손재호;인영길;장두희
    • Proceedings of the KSEG Conference
    • /
    • 2002.04a
    • /
    • pp.61-73
    • /
    • 2002
  • Daegok dam is Concrete Face Rockfill Dam(C.F.R.D) of which 52m height, 190m length, that construction in beneath 306, Chanjeon-Ri, Dudong-Myeon, Ulju-Gun, Ulsan Metrocity. Left slope excavation of spillway have related to Daegok dam construction are developing crack in Sta. No. 1~2, EL. 134~137m after 67.0mm rainfall from 2000. 7. 23. 13:00 to 7. 24. 04:00. Surface geological survey and slope stability investigation with stereographic projection method in order of slope stability establishment. Partial supplement excavation and SSL. P. C. Anchoring method is able to pre-stressing are think about unstable element after excavation. This slope stability establishment is very successfully completion.

  • PDF

Failure Prediction and Behavior of Cut-Slope based on Measured Data (계측결과에 의한 절토사면의 거동 및 파괴예측)

  • Jang, Seo-Yong;Han, Heui-Soo;Kim, Jong-Ryeol;Ma, Bong-Duk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.165-175
    • /
    • 2006
  • To analyze the deformation and failure of slopes, generally, two types of model, Polynomial model and Growth model, are applied. These two models are focused on the behavior of the slope by time. Therefore, this research is more focused on predicting of slope failure than analyzing the slope behavior by time. Generally, Growth model is used to analyze the soil slope, to the contrary, Polynomial model is used for rock slope. However, 3-degree polynomial($y=ax^3+bx^2+cx+d$) is suggested to combine two models in this research. The main trait of this model is having an asymptote. The fields to adopt this model are Gosujae Danyang(soil slope) and Youngduk slope(rock slope), which are the cut-slope near national road. Data from Gosujae are shown the failure traits of soil slope, to the contrary, those of Youngduk slope are shown the traits of rock slope. From the real-time monitoring data of the slope, 3-degree polynomial is proved as excellent system to analyze the failure and behavior of slope. In case of Polynomial model, even if the order of polynomials is increased, the $R^2$ value and shape of the curve-fitted graph is almost the same.

Long Term Stability of Slopes Excavated in Weathered Granite Rock Masses Subjected to Extreme Climatic Conditions (극한 기후 조건하에서 풍화된 화강암반 절취사면에 대한 장기적 안정성 연구)

  • Yang, Kwang-Yong;Park, Yeon-Jun;You, Kwang-Ho;Woo, Ik;Park, Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.655-662
    • /
    • 2003
  • Slope stability is an important issue ill civil engineering works or in open pit mines where both economy and efficiency is required. These are the long-term stability problems which depend on the change of physical properties under a certain weather condition. These can also result in progress of weathering which can change mechanical or hydro-geological properties of rock mass considerably. In this study, weathering in nature was simulated by freeze-thaw test and Soxhlet test which represent mechanical and chemical weathering respectively. Measured were elastic wave velocities, absorption rate, volume change. Uniaxial compression strengths before and after the weathering tests were also measured. The change in weight and volume of the specimens were not clearly related to the weathering process, but P, S wave velocities were clearly decreased as weathering progresses. For some class of rocks, P-wave velocity was increased probably because of the saturation due to improved connectivity of the pre-existing pores. Based on the test results, stability of the slopes were analyzed using FLAC$\^$2D/. Due to the reduced strength parameters, the factors of safety were decreased for the selected sites.

  • PDF

Case Study of Rock Mass Classifications in Slopes (절취사면의 암질평가사례)

  • Shin, Hee-Soon;Han, Kong-Chang;Sunwoo, Choon;Song, Won-Kyong;Synn, Joong-Ho;Park, Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.109-116
    • /
    • 2000
  • Rippability refers to the ease of excavation by construction equipment. Since it is related to rock quality in terms of hardness and fracture density, which may be measured by seismic refraction surveys, correlations have been made between rippability and seismic P wave velocities. The 1-channel signal enhancement seismograph(Bison, Model 1570C) was used to measure travel time of the seismic wave through the ground, from the source to the receiver. The seismic velocity measurement was conducted with 153 lines at 5 rock slopes of Chungbuk Youngdong area. Schmidt rebound hardness test were conducted with 161 points on rock masses and the point load test also on 284 rock samples. The uniaxial compressive strength and seismic wave velocity of 60 rock specimens were measured in laboratory. These data were used to evaluate the rock quality of 5 rock slopes.

  • PDF

Generation Characteristics and Prediction of Acid Rock Drainage(ARD) of Road Cut Slopes (건설현장 절취사면의 산성배수 발생특성과 잠재적 산발생능력 평가)

  • Lee, Gyoo-Ho;Kim, Jae-Gon;Lee, Jin-Soo;Chon, Chul-Min;Park, Sam-Gyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.491-498
    • /
    • 2005
  • Acid Rock Drainage(ARD) is the product formed by the atmospheric(i.e. by water, oxygen and carbon dioxide) oxidation of the relatively common iron-sulphur minerals pyrite($FeS_2$). ARD causes the acidification and heavy metal contamination of water and soil and the reduction of slope stability. In this study the generation characteristics and the prediction of ARD of various road cut slopes were studied. An attempt to classify the rocks into several groups according to their acid generation potentials was made. Acid Base Accounting(ABA) tests, commonly used as a screening tool in ARD predictions, were performed. Sixteen rock samples were classified into PAF(potentially acid forming) group and four rock samples into NAF(non-acid forming) group. The chemical analysis of water samples strongly suggested that ARD with high content of heavy metals and low pH could pollute the ground water and/or stream water.

  • PDF

도로안정성을 고려한 친환경적 터널 갱문 설계 및 시공사례

  • Wi, Yong-Gon;Kim, Do-Hyeong;Kim, Yeong-Geun;Kim, Il-Hwan;Gwon, Jae-Seok;Lee, Won-U
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2004.04a
    • /
    • pp.199-217
    • /
    • 2004
  • 터널 설계에 있어 갱구부의 위치 및 갱문형식의 선정은 터널 및 갱구사면의 안정성뿐만 아니라, 주위환경과의 조화 및 자연환경 훼손 최소화 등과 같은 환경적인 측면에서도 매우 중요한 부분이다. 현행 국내의 경우 경제성과 시공성 위주의 갱구부 위치 선정으로 과다 절취구간이 발생되어 환경훼손, 민원문제 발생, 과다한 용지 매입비용 등의 여러 가지 부작용이 발생되고 있다. 또한, 갱문 형식의 선정에 있어서 갱구부의 지형여건 및 제반 환경적 영향을 고려하지 않고 원통절개형과 면벽식 갱문의 획일적인 적용으로 주변지형과의 부조화를 이루는 사례가 다수 발생하고 있으며, 갱구부 상단의 유실된 토석이 완충공간의 부족으로 도로 노면상에 낙하되는 사고가 발생하고 있어 그에 대한 대책이 필요한 실정이다. 이와 같은 문제점을 보완하기 위해 갱구부 절취구간 최소화를 위한 구체적인 최소토피고 기준을 마련하였으며, 갱구상단 지형경사의 완급, 갱문주위의 배수기능, 낙석${\cdot}$산사태 등의 발생가능성 등을 고려한 새로운 갱문형식을 제안하고 체계적인 검토를 수행하였다. 이를 통해 점차 강화되는 환경보호정책 방향에 부응하고 자연환경 훼손을 최소화하며, 특히 해빙기와 집중호우시 낙석${\cdot}$눈사태로부터 도로의 안전을 확보할 수 있는 터널 갱문부 설계기준을 제시하였다. 또한, 실제 고속도로 터널의 설계 적용사례를 통하여 본 설계기준의 적용성을 분석하였으며, 실제 갱문 시공사례를 소개하여 향후 설계 및 시공에 도움이 되고자 하였다.

  • PDF

Analysis of Deformation and Stability of Slope at the Wiri Region of Local Road 999 Nearby Andong, Gyeongsangbukdo in Korea. (999번 지방도로 경상북도 안동시 위리 지역의 사면 변형 및 안정성 분석)

  • 장현식;장보안
    • The Journal of Engineering Geology
    • /
    • v.10 no.1
    • /
    • pp.1-12
    • /
    • 2000
  • Heaving of road and subsidence of slope took place at the Wiri region of the local highway 999 in Gyeongsangbukdo, Korea after heavy rain in the next year of construction. Although the state government had performed remedial treatments by reducing the angle and the height of the slope, deformation had never stopped. Therefore, we have preformed the analysis of deformation and stabilityof the slope. Study area consists of the Cretaceous shale, siltstone and sandstone and two faults are found. The major deformation occurred by sliding of rock mass along faults after heavy rain because not only thepore pressure at the fault plane and the unit weight of sliding mass increased, but did the shearstrength of saturated fault clay become very low. The decrease in shear strength of saturated fault clayis the major factor among the reasons for deformation. Numerical simulations using limit equilibriummodel, finite difference model and finite element model were performed for eight cross sections.Although safety factors are above 1.7 during the dry season, they become below 1.0 when groundwaterlevel raises to surface. The maximum displacement is about 15-3Ocm. However, safety factors increasedto above 2.4 and the maximum displacement is below 2.08cm after remedial treatment, Indicating thatthe slope becomes stable.

  • PDF

A Parametric Study for Jointed Rock Slope Using FEM (절리 암반사면에서의 인자효과에 의한 유한요소 해석의 타당성 검토)

  • Lee, Jin-A;Chung, Chang-Hee;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.97-102
    • /
    • 2007
  • Though the stability analysis of soil slopes widely employs the limit equilibrium method, the study on the jointed rock slopes must consider the direction of joint and the characteristics of Joint at the same time. This study analyzes the result of the change in the factors which show the characteristics of discontinuity and the shape factor of rock slopes, and so on, in an attempt to validate the propriety as to the interpretation of jointed rock slope stability which uses the general finite element program. First, the difference depending on the flow rules was compared, and the factor effect study was conducted. The selected independent variables included the direction of joint which displays the mechanical characteristics of discontinuity, adhesive cohesion, friction angle, the inclination and height of rock slope which reveal the shape of slope and surcharge load. And the horizontal displacement was numerically interpreted at the 1/3 point below the slope, a dependent variable, to compare the relative degree of factor effects. The findings of study on factor effects led to the validation that the result of horizontal displacement for each factor satisfied various engineering characteristics, making it possible to be applied to stability interpretation of jointed rock slope. A modelling is possible, which considers the application of the result of real geotechnical surveys & laboratory studies and the non-linear characteristics when designing the rock slope. In addition, the stress change which may result from the natural disaster, such as precipitation, and the construction, can be expressed. Furthermore, as the complicated rock condition and the ground supporting effect can be considered through FEM, it is considered to be very useful in making an engineering decision on the cut-slope, reinforcement and so on.