• Title/Summary/Keyword: 전해

Search Result 3,129, Processing Time 0.038 seconds

Precalcification Treatment of $TiO_2$ Nanotube on Ti-6Al-4V Alloy (Ti-6Al-4V 합금 표면에 생성된 $TiO_2$ 나노튜브의 전석회화 처리)

  • Kim, Si-Jung;Park, Ji-Man;Bae, Tae-Sung;Park, Eun-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • Statement of problem: Recently precalcification treatment has been studied to shorten the period of the implant. Purpose: This study was performed to evaluate the effect of precalcification treatment of $TiO_2$ Nanotube formed on Ti-6Al-4V Alloy. Material and methods: Specimens of $20{\times}10{\times}2\;mm$ in dimensions were polished sequentially from #220 to #1000 SiC paper, ultrasonically washed with acetone and distilled water for 5 min, and dried in an oven at $50^{\circ}C$ for 24 hours. The nanotubular layer was processed by electrochemical anodic oxidation in electrolytes containing 0.5 M $Na_2SO_4$ and 1.0 wt% NaF. Anodization was carried out using a regulated DC power supply (Kwangduck FA, Korea) at a potential of 20 V and current density of $30\;㎃/cm_2$ for 2 hours. Specimens were heat-treated at $600^{\circ}C$ for 2 hours to crystallize the amorphous $TiO_2$ nanotubes, and precalcified by soaking in $Na_2HPO_4$ solution for 24 hours and then in saturated $Ca(OH)_2$ solution for 5 hours. To evaluate the bioactivity of the precalcified $TiO_2$ nanotube layer, hydroxyapatite formation was investigated in a Hanks' balanced salts solution with pH 7.4 at $36.5^{\circ}C$ for 2 weeks. Results: Vertically oriented amorphous $TiO_2$ nanotubes of diameters 48.0 - 65.0 ㎚ were fabricated by anodizing treatment at 20 V for 2 hours in an 0.5 M $Na_2SO_4$ and 1.0 NaF solution. $TiO_2$ nanotubes were composed with strong anatase peak with presence of rutile peak after heat treatment at $600^{\circ}C$. The surface reactivity of $TiO_2$ nanotubes in SBF solution was enhanced by precalcification treatment in 0.5 M $Na_2HPO_4$ solution for 24 hours and then in saturated $Ca(OH)_2$ solution for 5 hours. The immersion in Hank's solution for 2 weeks showed that the intensity of $TiO_2$ rutile peak increased but the surface reactivity decreased by heat treatment at $600^{\circ}C$. Conclusion: This study shows that the precalcified treatment of $TiO_2$ Nanotube formed on Ti-6Al-4V Alloy enhances the surface reactivity.

Bioactivity of precalcified nanotubular $TiO_2$ layer on Ti-6Al-7Nb alloy (나노튜브 $TiO_2$ 층 생성 후 전석회화 처리한 Ti-6Al-7Nb 합금의 생체활성도)

  • Seo, Jae-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.1
    • /
    • pp.16-21
    • /
    • 2011
  • Purpose: The purpose of this study was to investigate the bioactivity of precalcified nanotubular $TiO_2$ layer on Ti-6Al-7Nb alloy. Materials and methods: Anodic oxidation was carried out at a potential of 20 V and current density of 20 mA/$cm^2$ for 1 hour. The glycerol solution containing 1 wt% $NH_4F$ and 20 wt% deionized water was used as an electrolyte. Precalcification treatment was obtained by soaking in $Na_2HPO_4$ solution at $80^{\circ}C$ for 30 minutes followed by soaking in saturated $Ca(OH)_2$ solution at $100^{\circ}C$ for 30 minutes, followed by heat treatment at $500^{\circ}C$ for 2 hours. To evaluate the activity of precalcified nanotubular $TiO_2$ layer, specimens were immersed in a simulated body fluid with pH 7.4 at $36.5^{\circ}C$ for 10 days. Results: 1. Nanotubular $TiO_2$ layer showed the highly ordered dense structure by interposing small diameter nanotubes between large ones, the shape of nanotubes was enlarged as going down. 2. The mean length of nanotubes was $517.0{\pm}23.2\;nm$ innm glycerol solution containing 1 wt% $NH_4F$ and 20 wt% $H_2O$ at 20 V for 1 hour. 3. The bioactivity of Ti-6Al-7Nb alloy was improved with formation of nanotubular $TiO_2$ layer and precalcification treatment in $80^{\circ}C$ 0.5 M $Na_2HPO_4$ and saturated $100^{\circ}C$ $Ca(OH)_2$ solution. Conclusion: Bioactivity of precalcified nanotubular $TiO_2$ layer on Ti-6Al-7Nb alloy was improved.

Clinical Analysis of Infantile Hypertrophic Pyloric Stenosis (영아 비후성 유문 협착증의 임상적 분석)

  • Huh, Young-Soo;Lim, Myeung-Kook;Kim, Kyu-Rak
    • Advances in pediatric surgery
    • /
    • v.4 no.1
    • /
    • pp.39-47
    • /
    • 1998
  • Infantile hypertrophic pyloric stensosis(IHPS) occurs in three of 1000 live births, and is a major cause of nonbilious vomiting of early infancy. It's etiology and pathogenesis however are still obscure. The operation of pyloromyotomy described by Ramstedt in 1912 remains the standard treatment. From January 1990 to July 1997, 64 infants with IHPS were treated at the Department of Pediatric Sursery, Yeungnam University Hospital. The ratio of male to female was 7:1, and the most prevalent age ranged from 2 weeks to 8 weeks(81.2 %) of age. Fifty-seven infants were first born (57.8 percent). The body weight of all patients at admission was below the 50 percentile. Age of onset of symptoms was between 2 and 4weeks of age in 23 cases(35.9 %). All infants had a history of nonbilious vomting, generally projectile in nature. Hypokalemia was noted in 14 cases(21.9 %) and hypochloremia in 26 cases(40.6 %). In the preoperative ultrasonography, the average muscle thickness, diameter, and length of the pylorus were 6.3 mm, 12.3 mm, and 17.8 mm. A total of 13 associated anomalies were noted in 12 patients. All cases were treated with Fredet-Ramstedt pyloromyotomy. Postoperative wound infection occured in 3 cases. Thirteen cases(20.3 %) presented intermittent nonprojectile vomiting after operation. With control of oral intake vomiting subsided within one week in 63 patients, and in thirteen days in another.

  • PDF

Electrochemical Characteristics of Anode-supported Solid Oxide Fuel Cells (연료극 지지형 고체산화물 연료전지의 전기화학적 특성)

  • Yoon Sung Pil;Han Jonghee;Nam Suk Woo;Lim Tae-Hoon;Hong Seong-Ahn;Hyun Sang-Hoon;Yoo Young-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.58-64
    • /
    • 2001
  • YSZ ($8mol\%$ yttria-stabilized zirconia)-modified LSM $(La_{0.85}Sr_{0.15}MnO_3)$ composite cathodes were fabricated by formation of YSZ film on triple phase boundary (TPB) of LSM/YSZ/gas. The YSZ coating film greatly enlarged electrochemical reaction sites from the increase of additional TPB. The composite cathode was formed on thin YSZ electrolyte (about 30 Um thickness) supported on an anode and then I-V characterization and AC impedance analyses were performed at temperature between $700^{\circ}C\;and\;800^{\circ}C$. As results of the impedance analysis on the cell at $800^{\circ}C$ with humidified hydrogen as the fuel and air as the oxidant, R1 around the frequency of 1000 Hz represents the anode Polarization. R2 around the frequency of 100Hz indicates the cathode polarization, and R3 below the frequency of 10 Hz is the resistance of gas phase diffusion through the anode. The cell with the composite cathode produced power density of $0.55\;W/cm^2\;and\;1W/cm^2$ at air and oxygen atmosphere, respectively. The I-V curve could be divided into two parts showing distinctive behavior. At low current density region (part I) the performance decreased steeply and at high current density region (part II) the performance decreased gradually. At the part I the performance decrease was especially resulted from the large cathode polarization, while at the part H the performance decrease related to the electrolyte polarization.

Initial Charge/Discharge of $LiCoO_2$ Composite Cathode with Various Content of Conductive Material for the Lithium ion Battery (리튬이온전지용 $LiCoO_2$정극의 도전재료에 따른 초기 충방전 특성)

  • Doh Chil-Hoon;Moon Seong-In;Yun Mun-Soo;Yun Suong-Kyu;Yum Duk-Hyung;Park Chun-Jun
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.123-129
    • /
    • 1999
  • Initial electrochemical characteristics of $LiCoO_2$ electrode for lithium ion battery with various content of super s black as conductive material were evaluated through the charge/discharge with the potential range of 4.3V to 2.0V versus $Li^+/Li^+$. The rate of C/4 and C/2 by the 3 electrode test cell composed with an electrolytic solution of 1 mol/l $LiPF_6/EC+DEC(1:3\;by\; weight)$. Lithium was used as reference electrode. High impedance charge behavior was observed at early stage of charge. In the case of $3\%w/w$ of super s black as conductive material, the specific resistance of the high impedance releasing was $3.82\;{\Omega}\;{\cdot}\;g-LiCoCo_2$ at the current density of $0.5 mA/cm^2$, which corresponds 7 times of the specific resistance of electrode $(0.728 g-LiCoO_2)$. At second charge, the specific resistance of the high impedance releasing was 63 mn · g-Lico02, which corresponds 12eio of the specific resistance of electrode and only $1.7\%$ of that of the first charge. The first charge and discharge specific capacities at C/4 rate were 160-161 and $153\~155mAh/g-LiCoO_2$, respectively, to lead $95.4\~96.4\%$ of coulombic efficiencies and ca. $6 mAh/g-LiCoO_2$ of initial irreversible specific capacity. Specific resistance at the end of charge and rest showed low value at content of super s black between 2 and $7\%w/w$, which agreed with characteristics of irreversible specific capacity. Capacity densities were reduced by the increasing the content of conductive material. They were 447 and 431mAh/ml when 2 and $2.9\%w/w$ of super s black were used, respectively, at the rate of C/4.

Improved Electrochemical Performance and Minimized Residual Li on LiNi0.6Co0.2Mn0.2O2 Active Material Using KCl (KCl을 사용한 LiNi0.6Co0.2Mn0.2O2계 양극활물질의 잔류리튬 저감 및 전기화학특성 개선)

  • Yoo, Gi-Won;Shin, Mi-Ra;Shin, Tae-Myung;Hong, Tae-Whan;Kim, Hong-kyeong
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • Using a precursor of $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ as a starting material, a surface-modified cathode material was obtained by coating with KCl, where the added KCl reduces residual Li compounds such as $Li_2CO_3$ and LiOH, on the surface. The resulting electrochemical properties were investigated. The amounts of $Li_2CO_3$ and LiOH decreased from 8,464 ppm to 1,639 ppm and from 8,088 ppm to 6,287 ppm, respectively, with 1 wt% KCl added $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ that had been calcined at $800^{\circ}C$. X-ray diffraction results revealed that 1 wt% of KCl added $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ did not affect the parent structure but enhanced the development of hexagonal crystallites. Additionally, the charge transfer resistance ($R_{ct}$) decreased dramatically from $225{\Omega}$ to $99{\Omega}$, and the discharge capacity increased to 182.73mAh/g. Using atomic force microscopy, we observed that the surface area decreased by half because of the exothermic heat released by the Li residues. The reduced surface area protects the cathode material from reacting with the electrolyte and hinders the development of a solid electrolyte interphase (SEI) film on the surface of the oxide particles. Finally, we found that the introduction of KCl into $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ is a very effective method of enhancing the electrochemical properties of this active material by reducing the residual Li. To the best of our knowledge, this report is the first to demonstrate this phenomenon.

Methylation of P16 and hMLH1 in Gastric Carcinoma (위암에서 P16 및 hMLH1 유전자의 메틸화)

  • Sung, Gi-Young;Chun, Kyung-Hwa;Song, Gyo-Yeong;Kim, Jin-Jo;Chin, Hyung-Min;Kim, Wook;Park, Cho-Hyun;Park, Seung-Man;Lim, Keun-Woo;Park, Woo-Bae;Kim, Seung-Nam;Jeon, Hae-Myung
    • Journal of Gastric Cancer
    • /
    • v.5 no.4 s.20
    • /
    • pp.228-237
    • /
    • 2005
  • Purpose: We investigated the impacts of the methylation states of the P16 and the hMLH1 genes on pathogenesis and genetic expression of stomach cancer and their relationships with Helicobater pylori infection, and with other clinico-pathologic factors. Material and Methods: In our study, to detect protein expression and methylation status of the P16 and the hMLH1 genes in 100 advanced gastric adenocarcinomas, used immunohistochemical staining and methylation-specific PCR (MSP) and direct automatic genetic sequencing analysis. Results: Methylation of the P16 gene was observed in 19 out of 100 cases (19%) and in the 18 of those cases (94.7%) loss of protein expression was seen. We were sble to show that loss of P16 gene expression was related to methylation of the P16 gene (kappa coefficient=0.317, p=0.0011). Methylation of the hMLH1 gene was observed in 27 cases (27%), and in 24 cases of those 27 cases (88.8%), loss of protein expression was seen, which suggested that loss of protein expression in the hMLH1 gene is related to methylation of hMLH1 gene (kappa coefficient=0.675, P<0.0001). Also methylation of the hMLH1 gene was related to age, size of the mass, and lauren's classification. Conclusion: We found that methylation of DNA plays an important role in inactivation of the P16 and the hMLH1 genes. The methylation of the hMLH1 genes is significantly related to age, size of the mass, and lauren's classification.

  • PDF

Effect of Exogenous Application of Salicylic Acid or Nitric Oxide on Chilling Tolerance and Disease Resistant in Pepper Seedlings (외생 살리실산과 일산화질소 처리가 고추묘의 저온 내성 및 병 저항성에 미치는 영향)

  • Park, Song-Yi;Kim, Heung-Tae;Oh, Myung-Min
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.329-336
    • /
    • 2014
  • As an abiotic stress, chilling stress is one of the major factors limiting plant growth and increasing susceptibility to pathogens. Therefore, enhancing stress tolerance in plants is an important strategy for their survival under unfavorable environmental conditions. The objective of this study was to determine the effects of the exogenous application of salicylic acid (SA) or nitric oxide (NO) on chilling tolerance in pepper seedlings. Pepper (Capsicum annuum L. 'kidaemanbal') seedlings were grown under normal growing conditions ($20/25^{\circ}C$, 15 hours photoperiod, $145{\pm}5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, fluorescence lamps) for 23 days after transplanting. The solution (3 mL) of 1 mM SA and 0.3 mM NO with surfactant triton 0.1% were sprayed two times a week, respectively. Right after the completion of chemical application, seedlings were subjected to chilling condition at $4^{\circ}C$ for 6 hours under dark condition and then the seedlings were recovered at the normal growing conditions for 2 days. In order to assess plant tolerance against chilling stress, growth characteristics, chlorophyll fluorescence (Fv/Fm), and membrane permeability were determined after chilling stress imposition. Total phenolic concentration and antioxidant capacity were measured during the whole experimental period. Disease incidence for pepper bacterial spot and wilt was also analyzed. Pepper seedlings treated with SA or NO were maintained similar dry mass ratio, while the value in control increased caused by chilling stress suggesting relatively more water loss in control plants. Electrolyte leakage of pepper seedlings treated with SA or NO was lower than that of control 2 days after chilling treatment. Fv/Fm rapidly decreased after chilling stress in control while the value of SA or NO was maintained about 0.8. SA increased higher total phenolic concentration and antioxidant capacity than NO and control during chemical treatment. In addition, increase in total phenolic concentration was observed after chilling stress in control and NO treatment. SA had an effect on the reduction of bacterial wilt in pepper seedlings. The results from this study revealed that pre-treatment with SA or NO using foliar spray was effective in chilling tolerance and the reduction of disease incidence in pepper seedlings.

Electrochemical Treatment of Dye Wastewater Using Fe, RuO2/Ti, PtO2/Ti, IrO2/Ti and Graphite Electrodes (RuO2/Ti, PtO2/Ti, IrO2/Ti 및 흑연전극을 이용한 염료폐수의 전기화학적 처리)

  • Kim, A Ram;Park, Hyun Jung;Won, Yong Sun;Lee, Tae Yoon;Lee, Jae Keun;Lim, Jun Heok
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.16-28
    • /
    • 2016
  • Textile industry is considered as one of the most polluting sectors in terms of effluent composition and volume of discharge. It is well known that the effluents from textile dying industry contain not only chromatic substances but also large amounts of organic compounds and insolubles. The azo dyes generate huge amount of pollutions among many types of pigments. In general, the electrochemical treatments, separating colors and organic materials by oxidation and reduction on electrode surfaces, are regarded as simpler and faster processes for removal of pollutants compared to other wastewater treatments. In this paper the electrochemical degradation characteristics of dye wastewater containing CI Direct Blue 15 were analyzed. The experiments were performed with various anode materials, such as RuO2/Ti, PtO2/Ti, IrO2/Ti and graphite, with stainless steel for cathode. The optimal anode material was located by changing operating conditions like electrolyte concentration, current density, reaction temperature and initial pH. The degradation efficiency of dye wastewater increased in proportion to the electrolyte concentration and the current density for all anode materials, while the temperature effect was dependent on the kind. The performance orders of anode materials were RuO2/Ti > PtO2/Ti > IrO2/Ti > graphite in acid condition and RuO2/Ti > IrO2/Ti > PtO2/Ti > graphite in neutral and basic conditions. As a result, RuO2/Ti demonstrated the best performance as an anode material for the electrochemical treatment of dye wastewater.

Treatment of Industrial Wastewater by Electrochemical Method (전기화학적방법을 이용한 산업폐수 처리)

  • Cho, Ju-Sik;An, Myoung-Sub;Lee, Hong-Jae;Heo, Jae-Seon;Sohn, Bo-Kyoon;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.134-141
    • /
    • 2000
  • For electrochemical treatment of industrial wastewater, the effects of voltage, distance between electrodes, initial pH and NaCl concentrations on removal of pollutants were investigated in a batch electrolysis system. Temperature and pH in electrochemical reactor increased with increase in supplied voltage, but no significant change in EC was found. Removal of COD, turbidity, T-N and T-P were also enhanced with increase in the voltage. On the conditions of short distances between electrodes and long electrochemical reaction times, it was found that COD and T-N were very effectively removed in the system. Regardless of the distances, more than 80% of turbidity and T-P were removed at the beginning of reaction. When initial pH of the wastewater was about 7, the highest efficiency of COD removal was found in the system. On the other hand, removal efficiency of turbidity was unlikely affected by initial pH of the wastewater. T-N removal was increased with increase in initial pH. T-P was successfully removed in the pH range of 5 to 9 with varying removal efficiency of 79 to 96% after 2 minutes of electrochemical reaction time. Addition of NaCl into the electrochemical reactor increased removal efficiency of electrochemical treatment. The highest removal efficiency of COD and T-P, turbidity and T-N was obtained at NaCl concentrations of 500mg/L, 1,000 mg/L and 500mg/L, respectively.

  • PDF