Browse > Article
http://dx.doi.org/10.4047/jkap.2011.49.1.16

Bioactivity of precalcified nanotubular $TiO_2$ layer on Ti-6Al-7Nb alloy  

Seo, Jae-Min (Department of Prosthodontics, School of Dentistry, Chonbuk National University)
Publication Information
The Journal of Korean Academy of Prosthodontics / v.49, no.1, 2011 , pp. 16-21 More about this Journal
Abstract
Purpose: The purpose of this study was to investigate the bioactivity of precalcified nanotubular $TiO_2$ layer on Ti-6Al-7Nb alloy. Materials and methods: Anodic oxidation was carried out at a potential of 20 V and current density of 20 mA/$cm^2$ for 1 hour. The glycerol solution containing 1 wt% $NH_4F$ and 20 wt% deionized water was used as an electrolyte. Precalcification treatment was obtained by soaking in $Na_2HPO_4$ solution at $80^{\circ}C$ for 30 minutes followed by soaking in saturated $Ca(OH)_2$ solution at $100^{\circ}C$ for 30 minutes, followed by heat treatment at $500^{\circ}C$ for 2 hours. To evaluate the activity of precalcified nanotubular $TiO_2$ layer, specimens were immersed in a simulated body fluid with pH 7.4 at $36.5^{\circ}C$ for 10 days. Results: 1. Nanotubular $TiO_2$ layer showed the highly ordered dense structure by interposing small diameter nanotubes between large ones, the shape of nanotubes was enlarged as going down. 2. The mean length of nanotubes was $517.0{\pm}23.2\;nm$ innm glycerol solution containing 1 wt% $NH_4F$ and 20 wt% $H_2O$ at 20 V for 1 hour. 3. The bioactivity of Ti-6Al-7Nb alloy was improved with formation of nanotubular $TiO_2$ layer and precalcification treatment in $80^{\circ}C$ 0.5 M $Na_2HPO_4$ and saturated $100^{\circ}C$ $Ca(OH)_2$ solution. Conclusion: Bioactivity of precalcified nanotubular $TiO_2$ layer on Ti-6Al-7Nb alloy was improved.
Keywords
Ti-6Al-7Nb alloy; Nanotubular $TiO_2$; Precalcification treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Valota A, LeClere DJ, Skeldon P, Curioni M, Hashimoto T, Berger S, Kunze J, Schmuki P, Thompson GE. Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes. Electrochimica Acta 2009;54:4321-7.   DOI   ScienceOn
2 Beranek R, Hidebrand H, Schmuki P. Self-Organized Porous Titanium Oxide Prepared in $H_2SO_4/HF$Electrolytes. Electrochem Solid-State Lett 2003;6:B12-4.
3 Kunze J, Mu¨ller L, Macak JM, Greil P, Schmuki P, Muller FA. Timedependent growth of biomimetic apatite on anodic $TiO_2$nanotubes. Electrochimica Acta 2008;53:6995-7003.   DOI   ScienceOn
4 Macak JM, Schmuki P. Anodic growth of self-organized anodic $TiO_2$ nanotubes in viscous electrolytes. Electrochimica Acta 2006;52:1258-64.   DOI   ScienceOn
5 Kaneco S, Chen Y, Westerhoff P, Crittenden JC. Fabrication of uniform size titanium oxide nanotubes: Impact of current density and solution conditions. J Scripta Mat 2007;56:373-6.   DOI   ScienceOn
6 Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P. $TiO_2$nanotubes: Self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci 2007;11:3-18.   DOI   ScienceOn
7 Eisenbarth E, Velten D, Mu¨ller M, Thull R, Breme J. Biocompatibility of beta-stabilizing elements of titanium alloys. Biomaterials 2004;25:5705-13.   DOI   ScienceOn
8 Cai Z, Shafer T, Watanabe I, Nunn ME, Okabe T. Electrochemical characterization of cast titanium alloys. Biomaterials 2003;24:213- 8.   DOI   ScienceOn
9 Iijima D, Yoneyama T, Doi H, Hamanaka H, Kurosaki N. Wear properties of Ti and Ti-6Al-7Nb castings for dental prostheses. Biomaterials 2003;24:1519-24.   DOI   ScienceOn
10 Wang K. The use of titanium for medical applications in the USA. Mater Sci Eng A 1996;213:134-7.   DOI
11 Neupane MP, Kim YK, Park IS, Kim KA, Lee MH, Bae TS. Temperature driven morphological changes of hydrothermally prepared copper oxide nanoparticles. Surf Interface Anal 2009;41: 259-63.   DOI   ScienceOn
12 Larsson C, Thomsen P, Aronsson BO, Rodahl M, Lausmaa J, Kasemo B, Ericson LE. Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials 1996;17:605- 16.   DOI   ScienceOn
13 Kim SW, Yoon IH, Choe HC, Ko YM. Effects of surface roughness on the electrochemical characteristics of cell cultured Ti-6Al- 4V alloy. J Korean Res Soc Dent Materials 2005;32:303-12.
14 Ishizawa H, Ogino M. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. J Biomed Mater Res 1995;29:107- 19.   DOI   ScienceOn
15 Ma Q, Li M, Hu Z, Chen Q, Hu W. Enhancement of the bioactivity of titanium oxide nanotubes by precalcification. Mater Lett 2008; 62:3035-8.   DOI   ScienceOn
16 Kuroiwa A, Igarashi Y. Application of pure titanium to metal framework. J Jpn Prosthodont Soc 1998;42:547-58.   DOI
17 Rupp F, Scheideler L, Olshanska N, de Wild M, Wieland M, Geis-Gerstorfer J. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. J Biomed Mater Res A 2006;76:323-34.
18 Ellingsen JE, Johansson CB, Wennerberg A, Holme′n A. Improved retention and bone-tolmplant contact with fluoride-modified titanium implants. Int J Oral Maxillofac Implants 2004;19:659-66.
19 Hirata T, Nakamura T, Takashima F, Maruyama T, Taira M, Takahashi J. Studies on polishing of Ti and Ag-Pd-Cu-Au alloy with five dental abrasives. J Oral Rehabil 2001;28:773-7.   DOI   ScienceOn
20 Hanawa T, Ukai H, Murakami K, Asaoka K. Structure of Surface- Modified Layers of Calcium-Ion-Implanted Ti-6Al-4V and Ti-56Ni. Mater Trans JIM 1995;36:438-44.   DOI
21 Hanawa T, Asami K, Asaoka K. Microdissolution of calcium ions from calcium-ion-implanted titanium. Corros Sci 1996;38:1579- 94.   DOI   ScienceOn
22 Wang J, Layrolle P, Stigter M, de Groot K. Biomimetic and electrolytic calcium phosphate coatings on titanium alloy: physicochemical characteristics and cell attachment. Biomaterials 2004;25:583-92.   DOI   ScienceOn
23 Wen HB, Wolke JG, de Wijn JR, Liu Q, Cui FZ, de Groot K. Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatments. Biomaterials 1997;18:1471-8.   DOI   ScienceOn
24 Cheang P, Khor KA. Addressing processing problems associated with plasma spraying of hydroxyapatite coatings. Biomaterials 1996;17:537-44.   DOI   ScienceOn
25 De Andrade MC, Sader MS, Filgueiras MR, Ogasawara T. Microstructure of ceramic coating on titanium surface as a result of hydrothermal treatment. J Mater Sci Mater Med 2000;11:751- 5.   DOI   ScienceOn
26 Kasemo B. Lausmaa J. Metal selection and surface characteristics. In: Branemark PI, Zarb GA, Albrektsson T (eds), Tissue-integrated prostheses, Osseointegrated in clinical dentistry. Quintessence; Chicago; 1985. pp. 99-116.