DOI QR코드

DOI QR Code

Improved Electrochemical Performance and Minimized Residual Li on LiNi0.6Co0.2Mn0.2O2 Active Material Using KCl

KCl을 사용한 LiNi0.6Co0.2Mn0.2O2계 양극활물질의 잔류리튬 저감 및 전기화학특성 개선

  • Yoo, Gi-Won (Department of Nano-Polymer Science & Engineering, Korea National University of Transportation) ;
  • Shin, Mi-Ra (Department of Nano-Polymer Science & Engineering, Korea National University of Transportation) ;
  • Shin, Tae-Myung (Department of Aeronautical and Mechanical Design, Korea National University of Transportation) ;
  • Hong, Tae-Whan (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Kim, Hong-kyeong (Department of Nano-Polymer Science & Engineering, Korea National University of Transportation)
  • 유기원 (한국교통대학교 나노화학소재공학과) ;
  • 신미라 (한국교통대학교 나노화학소재공학과) ;
  • 신태명 (한국교통대학교 항공기계설계학과) ;
  • 홍태환 (한국교통대학교 신소재공학과) ;
  • 김홍경 (한국교통대학교 나노화학소재공학과)
  • Received : 2016.10.21
  • Accepted : 2016.12.08
  • Published : 2017.02.28

Abstract

Using a precursor of $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ as a starting material, a surface-modified cathode material was obtained by coating with KCl, where the added KCl reduces residual Li compounds such as $Li_2CO_3$ and LiOH, on the surface. The resulting electrochemical properties were investigated. The amounts of $Li_2CO_3$ and LiOH decreased from 8,464 ppm to 1,639 ppm and from 8,088 ppm to 6,287 ppm, respectively, with 1 wt% KCl added $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ that had been calcined at $800^{\circ}C$. X-ray diffraction results revealed that 1 wt% of KCl added $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ did not affect the parent structure but enhanced the development of hexagonal crystallites. Additionally, the charge transfer resistance ($R_{ct}$) decreased dramatically from $225{\Omega}$ to $99{\Omega}$, and the discharge capacity increased to 182.73mAh/g. Using atomic force microscopy, we observed that the surface area decreased by half because of the exothermic heat released by the Li residues. The reduced surface area protects the cathode material from reacting with the electrolyte and hinders the development of a solid electrolyte interphase (SEI) film on the surface of the oxide particles. Finally, we found that the introduction of KCl into $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ is a very effective method of enhancing the electrochemical properties of this active material by reducing the residual Li. To the best of our knowledge, this report is the first to demonstrate this phenomenon.

$LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$의 전구체 물질에 KCl을 첨가함으로써, 리튬카보네이트($Li_2CO_3$)와 리튬수산화물(LiOH)의 양을 감소시켰을 때 전기화학특성에 어떤 영향을 주는지에 대한 연구를 진행하였다. KCl을 1 질량 %로 전구체에 첨가하여 $800^{\circ}C$에서 열처리 한 샘플의 경우, 첨가하지 않은 재료와 대비하여 잔류하는 리튬카보네이트($Li_2CO_3$)는 8,464 ppm에서 1,639 ppm으로 리튬수산화물(LiOH)은 8,088 ppm에서 6,287 ppm으로 크게 감소하였다. XRD 분석결과 KCl의 첨가는 모상구조에 영향을 주지 않았으며, 층상구조 결정성이 약간 개선되는 효과가 확인되었다. 또한, 전하전달 저항($R_{ct}$)은 $255{\Omega}$에서 KCl 첨가 시 $99{\Omega}$으로 감소하였다. 초기 방전 용량은 171.04 mAh/g에서 182.73 mAh/g으로 증가하였으며 싸이클 특성도 개선되었다. 특히, AFM 분석을 통하여 표면적이 50% 감소하는 것을 확인하였는데, 이는 잔류리튬의 산화반응으로 인한 열 때문일 것으로 해석되고, 전해질과의 부반응을 억제할 수 있는 장점이 있었다. 잔류리튬 제거를 위해 KCl을 첨가한 연구는, 아직까지 발표된 바가 없으며, $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$계 양극활물질의 전기화학특성을 개선하는데 매우 효과적임을 본 연구를 통해 확인할 수 있었다.

Keywords

References

  1. G. K. Yoo, H.J. Jeon and J.T.Son, J. Korean Electrochem. Soc., 16, 59-64 (2013). https://doi.org/10.5229/JKES.2013.16.2.59
  2. S.B. Yang, G.W. Yoo, B.C. Jang and J.T.Son, J. Korean Electrochem. Soc., 17, 149-155 (2014). https://doi.org/10.5229/JKES.2014.17.3.149
  3. J.M. Tarascon, M. Armand, Nature. 414, 359 (2001). https://doi.org/10.1038/35104644
  4. K. Zaghib, M. Armand and M. Gauthier, J. Electrochem. Soc., 145, 3135 (1998). https://doi.org/10.1149/1.1838776
  5. Y. Li, G.L. Pan, J.W. Liu and X.P. Gao, J. Electrochem. Soc., 156, A495 (2009). https://doi.org/10.1149/1.3121216
  6. J. Lim, E. Choi, V. Mathew, D. Kim, D. Ahn, J. Gim, S. Kang and J. Kim, J. Electrochem. Soc., 158, A275 (2011). https://doi.org/10.1149/1.3527983
  7. J. Kim and J. Cho, Electrochem. Solid State Lett., 10, A81 (2007). https://doi.org/10.1149/1.2431242
  8. J. Huang and Z. Jiang, Electrochem. Solid State Lett., 11, A116 (2008). https://doi.org/10.1149/1.2917585
  9. L. Liu, K. Sun, N. Zhang, T. Yang, J. Solid State Electrochem. 13, 1381 (2009). https://doi.org/10.1007/s10008-008-0695-z
  10. Z. Zhu, H. Yan, D. Zhang, W. Li, Q. Lu, J. Power Sources. 224, 13 (2013). https://doi.org/10.1016/j.jpowsour.2012.09.043
  11. S.-W. Han, J.H. Ryu, J. Jeong, and D.-H. Yoon, J. Alloys Compd., 570, 144 (2013). https://doi.org/10.1016/j.jallcom.2013.03.203
  12. J. Jang, H. Yoon, Small. 1, 1195 (2005). https://doi.org/10.1002/smll.200500237
  13. S.M. Shang, X.M. Yang, X.M. Tao, Polymer. 50, 2815 (2009). https://doi.org/10.1016/j.polymer.2009.04.041
  14. X.M. Yang, Z.X. Zhu, T.Y. Dai, Y. Lu, Macromolecular Rapid Communications. 26, 1736 (2005). https://doi.org/10.1002/marc.200500514
  15. G.X. Wang, L. Yang, Y.Chen, J.Z. Wang, S. Bewlay, H.K. Liu, Electrochimica Acta. 50, 4649 (2005). https://doi.org/10.1016/j.electacta.2005.02.026
  16. C. S. Kang, C. Kim and J. T. Son, "Synthesis of $LiFePo_4$ nano-fibers for cathode materials by electrospinning process", J. KIEEME, 13, s304 (2012).
  17. A.J. Bard, L.R. Faulkner, Electrochemical Methods, second ed., John Wiley&Sons, New York, 2001.