• Title/Summary/Keyword: 전파식

Search Result 538, Processing Time 0.024 seconds

Analytical Wave Solution Propagating over Deeper Water (깊은 수심을 전파하는 파랑해석해)

  • Jung, Tae-Hwa
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2010.05a
    • /
    • pp.633-634
    • /
    • 2010
  • 축대칭 함몰지형 위를 진행하는 확장형 완경사 방정식의 해석해를 유도하였다. 변수분리법을 이용하여 지배방정식을 상미분방정식으로 만들었으며, 파속과 군속도로 표현되는 계수들은 Hunt(1979)의 근사식을 이용하여 양함수의 형태로 표현하였다. 마지막으로 Frobenius기법을 이용하여 확장형 완경사방정식의 해를 유도하였다.

  • PDF

Experimental Study on Resonant Reflection of Regular Waves due to Submerged Breakwaters with Trapezoidal Type (사다리꼴형상의 수중방파제에 의한 규칙파의 반사특성 실험)

  • 김영택;조지훈;이종인;조용식
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.263-265
    • /
    • 2002
  • 외해에서 전파되어 온 파랑은 상대적으로 수심이 얕은 천해로 이동하면서 바닥지형의 영향으로 회절, 굴절, 반사, 천수 및 쇄파 등과 같은 다양한 현상을 경험한다. 본 연구에서는 바닥지형의 변화에 따른 파랑의 반사에 대해 검토하였다. (중략)

  • PDF

A Study on Shape Optimization of Distributed Actuators using Time Domain Finite Element Method (시간유한요소법을 이용한 분포형 구동기의 형상최적화에 관한 연구)

  • Suk, Jin-Young;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.56-65
    • /
    • 2005
  • A dynamic analysis method that freezes a time domain by discretization and solves the spatial propagation equation has a unique feature that provides a degree of freedom on spatial domain compared with the space discretization or space-time discretization finite element method. Using this feature, the time finite element analysis can be effectively applied to optimize the spatial characteristics of distributed type actuators. In this research, the time domain finite element method was used to discretize the model. A state variable vector was used in the discretization to include arbitrary initial conditions. A performance index was proposed on spatial domain to consider both potential and vibrational energy, so that the resulting shape of the distributed actuator was optimized for dynamic control of the structure. It is assumed that the structure satisfies the final rest condition using the realizable control scheme although the initial disturbance can affect the system response. Both equations on states and costates were derived based on the selected performance index and structural model. Ricatti matrix differential equations on state and costate variables were derived by the reconfiguration of the sub-matrices and application of time/space boundary conditions, and finally optimal actuator distribution was obtained. Numerical simulation results validated the proposed actuator shape optimization scheme.

Retrieval of Soil Moisture Using Microwave Reflection at the End of a Coaxial Probe (동축선 끝단에서의 마이크로파 반사를 이용한 토양 수분 함유량 산출 기술)

  • 김태진;오이석
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.2
    • /
    • pp.151-163
    • /
    • 1997
  • In this paper, an algorithm for retrieving soil moisture from measurement of microwave reflection at the end of a coaxial canble is presented. Because the wave reflection from the boundary between air and soil layers depends on the dielectric constant of the soil layer, the dielectric constant can be obtained from measured reflection coefficient. At first, an equivalent circuit for the coaxial probe contaced on the soil surface was chosen with two unknown circuit elements. Then, the unknown circuit elements are obtained experrmentally by measuring the reflection constants of 20 soil samples, and consequently, an empirical formula for computing the dielectric constant from the reflection coefficient is obtained. The dielectric constant is mainly influenced by the soil moisture, and the soil moisture can be computed from the dielecfic constant using an existing empirical formula. HP Network Analyzer 8510C was used to measure the magnitude and the phase of the reflection coeffcient at 4.65 GHz, and the measured data set were used to obtain an empirical formula for computing the dielectric constant. The empirical formula obtained in this study was proven by other soil samples.

Propagation of Bulk Longitudinal Waves in Thin Films Using Laser Ultrasonics (레이저 초음파를 이용한 체적종파의 박막 내 전파특성 연구)

  • Kim, Yun Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.4
    • /
    • pp.266-272
    • /
    • 2016
  • This paper presents the investigation of the propagation behavior of bulk longitudinal waves generated by an ultrafast laser system in thin films. A train of femtosecond laser pulses was focused onto the surface of a 150-nm thick metallic (chromium or aluminum) film on a silicon substrate to excite elastic waves, and the change in thermoreflectance at the spot was monitored to detect the arrival of echoes from the film/substrate interface. The experimental results show that the film material characteristics such as the wave velocity and Young's modulus can be evaluated through curve-fitting in numerical solutions. The material properties of nanoscale thin films are difficult to measure using conventional techniques. Therefore, this research provides an effective method for the nondestructive characterization of nanomaterials.

Simulation of Reflective Boundaries Using the Sponge Layer in Boussinesq Wave Propagation Model (Boussinesq 파랑전파모델에서 스펀지층을 이용한 반사경계의 모의)

  • Chun, In-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.429-435
    • /
    • 2007
  • The present study proposed a method fer simulating reflective boundary conditions in Boussinesq wave propagation model by lining lateral boundaries like breakwaters and seawalls with artificial sponge layers. In order to find out the reflective characteristics of sponge layers, 1D numerical experiments were performed varying the relative sponge width (sponge width/wave length). The results showed that the reflection coefficient can be effectively realized from no reflection to full reflection simply by adjusting the relative sponge width. Based on the results, a multiple regression formula was proposed to delineate the relationship among the reflection coefficient and other dimensionless variables. Finally, the reflective sponge layer was applied to a semi-infinite breakwater, demonstrating that it can also be successfully employed in 2D applications.

Communication and data processing strategy for the electromagnetic wave precipitation gauge system (전파강수계 시스템의 통신 및 자료처리 전략 개발)

  • Lee, Jeong Deok;Kim, Minwook;Park, Yeon Gu
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.62-66
    • /
    • 2017
  • In this paper, we present the development of communication and data processing strategy for the electromagnetic wave precipitation gauge system. The electromagnetic wave precipitation gauge system is a small system for deriving area rainfall rates within 1 km radius through dual polarization radar observation at 24GHz band. It is necessary to take consider for measurement of accurate precipitation under limited computing resources originating from small systems and to minimize the use of network for the unattended operation and remote management. To overcome computational resource limitations, we adopted the fuzzy logic for quality control to eliminate non-precipitation echoes and developed the method by weighted synthesis of various rain rate fields using multiple radar QPE formulas. Also we have designed variable data packets rules to minimize the network traffic.

A Study of Correlation between Flame Propagation Velocity and Scalar Dissipation Rate for a Liftoff Flame (부상화염에서 화염전파속도와 스칼라소산율의 상호 관계에 관한 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.3
    • /
    • pp.33-42
    • /
    • 2009
  • A numerical analysis of reactive flow in a liftoff flame is accomplished to elucidate the characteristics of liftoff flame. To verify reliance of numerical calculation, the liftoff heights of liftoff flame for various fuel exit velocities are compared between the existing experimental research results and the present calculation results. The flame propagation velocity is conducted at the flow redirection point which is on a stoichiometric line ahead of flame front. This point was selected constant distance from triple point regardless of fuel exit velocity at the previous research. This causes considerable errors for the flame propagation velocity and scalar dissipation rate. The main issue of the present research is to establish the resonable method to select the redirection point and so that to clarify the relationship between flame propagation velocity and scalar dissipation rate, which is the core properties in a triple flame stability.

  • PDF

A Study on the Stress Wave Propagation of Composite Laminate Subjected to Low-Velocity Impact (저속 충격을 받는 적층 복합재의 응력파 전파에 관한 연구)

  • 안국찬;김문생;김규남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.9-19
    • /
    • 1989
  • The impact stress and wave propagation of graphite/epoxy and glass/epoxy laminates subjected to the transverse low-velocity impact of steel balls are investigated theoretically. A plate finite element model based on Whitney and Pagano's theory for the analysis of heterogeneous and anisotropic plates taking into account of the transverse shear deformation is used for the theoretical investigation. This model is in conjuction with static contact laws. The basic element is a four-node quadrilateral with the five degrees-of-freedom per node. The reduced integration technique is used for shear locking associated with low-order function in application to thin plates. These two materials are composed of [0.deg./45.deg./0.deg./-45.deg./0.deg.]$_{2S}$ and [90.deg./45.deg./90.deg./-45.deg./90.deg.]$_{2S}$ stacking sequences and have clamped-clamped boundary conditions. Finally, the present results are compared with an existing solution and wave propagation theory and then impact stress and wave propagation phenomena are investigated.gated.