Simulation of Reflective Boundaries Using the Sponge Layer in Boussinesq Wave Propagation Model

Boussinesq 파랑전파모델에서 스펀지층을 이용한 반사경계의 모의

  • Chun, In-Sik (Department of Civil and Engineering, Konkuk University)
  • Published : 2007.10.25

Abstract

The present study proposed a method fer simulating reflective boundary conditions in Boussinesq wave propagation model by lining lateral boundaries like breakwaters and seawalls with artificial sponge layers. In order to find out the reflective characteristics of sponge layers, 1D numerical experiments were performed varying the relative sponge width (sponge width/wave length). The results showed that the reflection coefficient can be effectively realized from no reflection to full reflection simply by adjusting the relative sponge width. Based on the results, a multiple regression formula was proposed to delineate the relationship among the reflection coefficient and other dimensionless variables. Finally, the reflective sponge layer was applied to a semi-infinite breakwater, demonstrating that it can also be successfully employed in 2D applications.

비선형 Boussinesq 파랑전파 모델에서 방파제, 호안 등의 반사 경계면에 스펀지층을 설치하여 반사율을 모의하는 방법을 제안하였다. 스펀지층의 반사특성을 도출하기 위하여 상대 스펀지폭(스펀지층 폭/입사파장)을 변화시키는 일차원 수치실험을 수행하였다. 실험결과, 상대 스펀지폭을 조정함으로써 무반사에서 완전반사까지 반사율을 효과적으로 구현할 수 있음을 보였으며, 실험결과에 근거하여 반사율과 관련 무차원 변수들간의 다중회귀분석식을 제시하였다. 마지막으로, 본 스펀지층을 이차원 방파제에 적용하였으며, 스펀지층이 반사경계로서 평면 이차원 조건에서도 충분히 효과적으로 사용될 수 있음을 예시하였다.

Keywords

References

  1. 박우선, 오영민, 전인식 (1992). 최소자승법에 의한 입.반사파의 분리기법, 한국해안.해양공학회지, 4(3), 139-145
  2. 전인식 (2003). 항만시설개선을 통한 가동율 제고방안 연구용역(I), 해양수산부, 425 p
  3. 전인식, 성상봉, 김귀동, 심재설 (2005). Boussinesq 방정식을 이용한 수중천퇴에서의 파랑변형 및 파랑류 계산, 17(3), 202-212
  4. 전인식, 김귀동, 심재설 (2006). 수중천퇴에서의 쇄파거동 예측을 위한 Boussinesq 방정식 모델의 적용, 한국해안해양공학회지, 18(2), 154-165
  5. Cruz, E., Yokoki, H., Isobe, M. and Watanabe, A (1993). Nonreflecting boundary conditions for nonlinear wave, Proc. of Coastal Eng., JSCE, 40, 46-50 (in Japanese)
  6. Israeli, M and Orszag, S.A. (1981). Approximation of radiation boundary conditions, J. Computational Physics, 41, 115-135 https://doi.org/10.1016/0021-9991(81)90082-6
  7. Madsen, P.A., Sorensen, O.R. and Schaffer, H.A. (1997), Surf zone dynamics simulated by a Boussinesq type model. Part I. Model description and cross-shore motion of regular waves, Coastal Engineering, 32, 255-287 https://doi.org/10.1016/S0378-3839(97)00028-8
  8. Nwogu, O. (1993). An alternative form of the Boussinesq equations for nearshore wave propagation, J. Waterway, Port, Coast, Ocean Engrg, 119(6), 618-638 https://doi.org/10.1061/(ASCE)0733-950X(1993)119:6(618)
  9. Penny, W.G. and Price, A.T. (1952). The diffraction theory of sea waves and shelter afforded by breakwaters, Philosophical Transactions of the Royal Society of London, Physical Science and Engineering, 244(882), 236-253 https://doi.org/10.1098/rsta.1952.0003
  10. Wei, G., Kirby, J.T. Grilli, S.T. and Subramanya, R. (1995). A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves, J. Fluid Mech., 294, 71-92 https://doi.org/10.1017/S0022112095002813
  11. Wei, G., Kirby, J.T. and Sinha, A. (1999). Generation of waves in Boussinesq models using a source function method, Coastal Engineering, 36, 271-299 https://doi.org/10.1016/S0378-3839(99)00009-5
  12. 平山克也. 平山哲也 (2001). ブシネスクモデルおける透水層內の波浪減衰を考慮した任意反射境界處理法の開發, 海岸工學論文集, 48, 26-30