• Title/Summary/Keyword: 전투 생존성

Search Result 56, Processing Time 0.025 seconds

Analysis of Survivability for Combatants during Offensive Operations at the Tactical Level (전술제대 공격작전간 전투원 생존성에 관한 연구)

  • Kim, Jaeoh;Cho, HyungJun;Kim, GakGyu
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.5
    • /
    • pp.921-932
    • /
    • 2015
  • This study analyzed military personnel survivability in regards to offensive operations according to the scientific military training data of a reinforced infantry battalion. Scientific battle training was conducted at the Korea Combat Training Center (KCTC) training facility and utilized scientific military training equipment that included MILES and the main exercise control system. The training audience freely engaged an OPFOR who is an expert at tactics and weapon systems. It provides a statistical analysis of data in regards to state-of-the-art military training because the scientific battle training system saves and utilizes all training zone data for analysis and after action review as well as offers training control during the training period. The methodologies used the Cox PH modeling (which does not require parametric distribution assumptions) and decision tree modeling for survival data such as CART, GUIDE, and CTREE for richer and easier interpretation. The variables that violate the PH assumption were stratified and analyzed. Since the Cox PH model result was not easy to interpret the period of service, additional interpretation was attempted through univariate local regression. CART, GUIDE, and CTREE formed different tree models which allow for various interpretations.

A Study on Simple Calculation Method of Survival Time for Damaged Naval Ship Due to the Explosion (폭발에 의해 손상된 함정의 생존시간 간이계산법 연구)

  • Kim, Jae-Hyun;Park, Myung-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.4
    • /
    • pp.211-217
    • /
    • 2007
  • Due to advanced new weapons and changes in the combat environment, survivability improvement methods for naval ship design have continuously evolved. Surface naval ships are easily detected by the enemy and, moreover, there are many attack weapons that may be used against surface naval ships. Therefore, it is important for modem naval ships, especially combat naval ships, to ensure survivability. In order to design a naval ship considering survivability, the designers are required to establish reasonable attack scenarios. An explosion may induce local damage as well as global collapse of the ship. Therefore, possible damage conditions should be realistically estimated at the design stage. In this study, an ALE technique was used to simulate the explosion analysis, and the survival capability of damaged naval ships was investigated. Especially, the author have establish the simple method of estimation of survival time for damaged naval ships.

  • PDF

Comparison of the Priority of Required Capabilities of the Warrior Platform by the Types of Military Unit through AHP Analysis (AHP 분석을 통한 부대 임무유형별 워리어플랫폼 요구능력 우선순위 비교)

  • Kim, Wukki;Shin, Kyuyong;Jo, Seongsik;Baek, Seungho;Kim, Yongchul
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.262-269
    • /
    • 2021
  • The Ministry of National Defense is re-establishing the role of the Army in accordance with the defense reform and is promoting the Warrior Platform, a next-generation individual combat system. The Warrior Platform project is divided into three stages and is being promoted. In the first stage, the quality and performance of individual items are improved, in the second stage, items between system development are integrated, and in the third stage, the combat capability is maximized by developing an integrated unit weapon system. In this paper, detailed sub-items for the five essential required competencies (survival, lethality, mobility, sustainability, Communication) that are considered for building an effective warrior platform are presented. We also present a plan that can be used to prepare a specific master plan for the Army's Warrior Platform project by using Analytic Hierarchy Process(AHP) and selecting the priority of the five required capabilities and detailed sub-items for different unit types. As a result of analyzing the priorities of the four types of units with different mission types, we find that there are differences for each unit. These results are expected to be used as useful reference materials for setting the future direction for the development of warrior platform.

Analysis of User Transfer of Successful Battle Royale Games - From Player Unknown's Battleground to Fortnite (성공적인 배틀 로얄 게임에서의 사용자 이동 원인 분석 - 배틀그라운드에서 포트나이트로)

  • Song, Doo Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.71-76
    • /
    • 2020
  • A battle royale game is a multiplayer video game genre that blends the survival and exploration with last-man-standing gameplay. The genre has been hot in recent years and the 'Player Unknown's Battleground' produced by Korean enterprise PUBG had been the hottest during 2017 and the first half of 2018. However, a similar battle royale game 'Fortnite' became the game of the year in 2018 and the Player Unknown's Battleground sustains the predominance only in Korea and China. In this paper, we investigate the game structure of those two games on combat, survival, farming and charging elements, We also conduct a user survey on what might be the weak point of the Player Unknown's Battleground and why they choose Fornite among users played both but currently play Fortnite. The result shows that the Player Unknown's Battleground sustains the advantage on battle elements but creative charging policy and the efficient survival elements are the reasons of choosing Fortnite between the two.

A Development of 3D Modeling-based Survivability Analysis System for Armored Fighting Vehicle using Importance of Components (부품의 중요도를 활용한 3차원 전차 모델 기반 생존성 분석 시스템 개발)

  • Hwang, Hun-Gyu;Lee, Jae-Wook;Lee, Jae-Woong;Lee, Jang-Se
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1269-1276
    • /
    • 2015
  • The mission capability of tank depends on its survivability. The survivability is ability for protection and tolerance by damage from threats. To improve the survivability of tank, we need an effectiveness analysis for loss of components, and accomplish performance enhancement using the result of analysis. In this paper, we develop a survivability analysis system for tank based on the importance. The importance numerically represents weight of each component which consisting of whole tank, also the importance is basic method of quantitative survivability analysis. To do this, we assign weight values to each component of tank, compose a weight tree, apply the importance calculation equation, and analyze the survivability of tank. Also we develop the system that consists of component structuralization and weight value setting program and survivability analysis and visualization program, and evaluate the system using implemented 3D CAD models of components of tank. The developed system apply to arrangement components.

Reliability Analysis of Dual-Channel CAN bus for Submarine Combat System (잠수함 전투체계를 위한 이중채널 CAN 버스의 신뢰도 분석)

  • Song, Moogeun;Kim, Eunro;Lee, Dongik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.12
    • /
    • pp.1170-1178
    • /
    • 2013
  • Thanks to various benefits, low-cost real-time communication networks so called fieldbus have been widely used in many industrial applications including military systems, such as aircrafts, submarines, and robots. This paper presents a reliability analysis of dual-channel CAN(Controller Area Network) fieldbus which is used for controlling various equipment of submarine combat system. A submarine combat system playing a critical role to the success of missions and survivability consists of various devices including sensors/actuators and computers. Since a communication network for submarine combat system must satisfy an extremely high level of reliability, a dual channel technique is commonly adopted. In this paper, a Petri Net based reliability model for dual-channel CAN is discussed. A reliability model called generalized stochastic Petri Nets (GSPN) is built by utilizing the information on physical faults with CAN. The effectiveness of the proposed model is analyzed in terms of unreliability with respect to failure rate and repair rate.

An Experimental Study on the Measurement of Water Surface Discharge Temperature of High-Temperature Bubble Injected into Cylindrical Acrylic Water Tank (원통 아크릴 수조로 주입된 고온 기포의 수면 배출 온도 측정에 관한 실험적 연구)

  • SeokTae Yoon;YongJin Cho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.99-105
    • /
    • 2023
  • Submarines, which require a high degree of survivability, are among the most critical combat weapon systems in military strategic assets. Conventional submarines need air to operate their propulsion systems. Exhaust gases released into the water during snorkel navigation heat the surrounding fluid, producing a temperature wake. This wake, in turn, reduces the submarine's survivability. In this study, we conducted a preliminary experiment on the temperature traces formed by an underwater submarine's waste discharge. For this purpose, we collected propulsion system and navigation condition data from domestically introduced submarines and developed an experimental system to measure the temperature traces. As a result, we observed that high-temperature bubbles injected into the tank broke down into smaller sizes, and their temperature dropped to levels similar to the surrounding fluid. This observation was confirmed using a thermocouple sensor. Consequently, the thermal imaging system designed to measure the temperature trace of the water's surface did not detect any significant temperature traces.

Measurement of Dynamic Strains on Composite T-Joint Subjected to Hydrodynamic Ram Using PVDF Sensors (PVDF 센서를 이용한 수압램 하중을 받는 복합재 T-Joint의 동적 변형률 측정)

  • Go, Eun-Su;Kim, Dong-Geon;Kim, In-Gul;Woo, Kyeongsik;Kim, Jong-Heon
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.238-245
    • /
    • 2018
  • The hydrodynamic ram (HRAM) phenomenon is one of the main types of ballistic battle damages of a military aircraft and has great importance to airframe survivability design. The HRAM effect occurs due to the interaction between the fluid and structure, and damage can be investigated by measuring the pressure of the fluid and the dynamic strains on the structure. In this paper, HRAM test of a composite T-Joint was performed using a ram simulator which can generate HRAM pressure. In addition, calibration tests of PVDF sensor were performed to determine the circuit capacitance and time constant of the measurement system. The failure behavior of the composite T-Joint due to HRAM pressure was examined using the strain gauges and a PVDF sensor which were attached to the surface of the composite T-Joint.

A study on Forecasting The Operational Continuous Ability in Battalion Defensive Operations using Artificial Neural Network (인공신경망을 이용한 대대전투간 작전지속능력 예측)

  • Shim, Hong-Gi;Kim, Sheung-Kown
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.3
    • /
    • pp.25-39
    • /
    • 2008
  • The objective of this study is to forecast the operational continuous ability using Artificial Neural Networks in battalion defensive operation for the commander decision making support. The forecasting of the combat result is one of the most complex issue in military science. However, it is difficult to formulate a mathematical model to evaluate the combat power of a battalion in defensive operation since there are so many parameters and high temporal and spatial variability among variables. So in this study, we used company combat power level data in Battalion Command in Battle Training as input data and used Feed-Forward Multilayer Perceptrons(MLP) and General Regression Neural Network (GRNN) to evaluate operational continuous ability. The results show 82.62%, 85.48% of forecasting ability in spite of non-linear interactions among variables. We think that GRNN is a suitable technique for real-time commander's decision making and evaluation of the commitment priority of troops in reserve.

  • PDF

A Vulnerability Analysis for Armored Fighting Vehicle based on SES/MB Framework using Importance of Component (구성 부품의 중요도를 활용한 SES/MB 프레임워크 기반 전차 취약성 분석)

  • Kim, Hun-Ki;Hwang, Hun-Gyu;Lee, Jang-Se
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.59-68
    • /
    • 2015
  • In this paper, we proposed a methodology of vulnerability analysis for armored fighting vehicle based on modeling and simulation. The SES/MB framework serves hierarchical representation of the structure for a complex systems and is easy to conduct modeling for the armored fighting vehicle which consists of various components. When the armored fighting vehicle is hit by the shots from threat, the vulnerability of the armored fighting vehicle is decreased by damaged or penetrated level of armors and components. The penetration is determined by the result of comparing a penetration energy through penetration analysis equation and defence ability of armor and components. And the defence ability is determined in accordance with type and defined property of normal component and armor component, all components have a weighted values for the degree of importance. We developed a simulation program for verification proposed methodology. Thus, the program analyzes vulnerability for armored fighting vehicle SES/MB framework using importance.