• 제목/요약/키워드: 전통적 계산법

검색결과 77건 처리시간 0.033초

18세기 조선산학서의 대수 영역에 나타난 서양수학 표현 및 계산법 연구 (A Study of the Representation and Algorithms of Western Mathematics Reflected on the Algebra Domains of Chosun-Sanhak in the 18th Century)

  • 최은아
    • 한국학교수학회논문집
    • /
    • 제23권1호
    • /
    • pp.25-44
    • /
    • 2020
  • 본 연구의 목적은 서양수학이 본격적으로 유입된 18세기 조선의 사회문화적 배경 하에 저슬된 조선 산학서의 대수 영역에서 서양수학의 표현과 계산법을 반영한 내용을 살펴보고, 서양식 계산법과 전통적 계산법의 공존 관계 또는 대체 양상을 분석하는 것이다. 이를 위해 18세기 산학문헌인 <구수략>, <고사신서>, <고사십이집>, <주해수용>을 중심으로 하여 <구일집>, <산학입문> 등 총 9종의 산학문헌을 분석하였다. 분석 결과, 산대 조작을 기반으로 하는 전통적인 사칙계산법이 과도기적 표현을 거쳐 유럽 수학의 필산으로 발달해가는 과정과 서양의 비례 개념과 비례식을 형식화하여 명시적으로 다루는 18세기 산학서의 공통적 변화를 확인하였다. 또한 연립일차방정식 해법의 계산식의 수학적 표현이 점진적으로 형식화되는 과정을 관찰하였다. 제곱근 계산법이 전통적인 개방술에서 증승개방법의 적용으로, 다시 유럽 산술이 반영된 제곱근을 구하는 필산으로 변화해가고 있음을 확인하였다. 이상의 18세기 조선산학 사례들은 수학의 진화적 속성과 사회문화적 속성을 이해할 수 있는 의미 있는 자료라고 할 수 있다.

local 페이즈를 이용한 표면결 지역 분할 (Local Phase-based Texture Region Segmentation Suk Oh, Kyungin Women' College)

  • 오석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.414-416
    • /
    • 1998
  • 페이즈를 계산하는 전통적인 방법인 역탄젠트로부터 계산된 페이즈는 불연속 속성을 갖는 wrapped페이즈이다. unwrapping과정을 거쳐 연속적인 함수로 표현되는 unwrapped페이즈는 linear요소와 local요소로 구성된다. 이 중 local요소가 표면결 분할에 유용하게 사용된다. local요소를 구하기 위해 linear요소를 찾아서 제거해야 하는 경우 먼저 linear요소를 구하는 방법이 제안되어야 한다. 본 논문는 필터의 방향에 제한을 두지 않고 어떠한 필터를 적용하더라도 linear요소를 구할 수 있는 새로운 계산법을 제안하였다.

  • PDF

해양구조물의 원통형 조인트에 대한 퐈괴역학적 피로 수명 산출방법 (Establishment of Ffracture Mechanics Fatigue Life Nnalysis Procedures for Offshore Tubular Joints part I :The Behabvior of Stress Intersity Factors of Weld Toe Surface Flow)

  • ;이희종
    • 한국해양공학회지
    • /
    • 제2권1호
    • /
    • pp.116-124
    • /
    • 1988
  • 해양구조물의 원통조인트에 대한 피로 수명 산출이 전통적으로 실험적 방법에만 의존해 왔음은,원통조인트의 구조가 복잡하여 용접부위 균열의 응력확대 계수 계산이 거의 불가능 했든 것이 주 원인이었다. 최근에 유한요소 3차원 모델을 이용한 계산방법이 개발되어 심히 구조적으로 복잡한 표면 균열의 응력확대계수 산출이 용이하게 되었다. 해양 구조물의 원통조인트에 대한 피로 수명 산출법을 개발하기 위한 연속되는 3부작의 제1부로서 본 논문은 X형 원통 조인트 용접주위 표면 균열의 응력확대 계수 거동을 분석하고 있다. 분석결과를 이용하여 응력확대계수를 엄격한 방법에 의해 계산하였다. 계산된 응력확대계수를 구조적인 관점에서 해석하고 있다.

  • PDF

확률론적 구조설계 최적화기법에 대한 비교연구 (A Comparative Study on Probabilistic Structural Design Optimization)

  • 양영순;이재옥
    • 한국전산구조공학회논문집
    • /
    • 제14권2호
    • /
    • pp.213-224
    • /
    • 2001
  • 확률론적 구조설계 최적화는 구조물의 역학적 특성이나 하중의 불확실성이나 임의성과 같은 변동성을 정량적이고 합리적으로 고려할 수 있다는 점에서 기존의 전통적인 확정론적 최적화와 비교된다. 확률론적 최적화의 방법론으로는 개선된 일계이차모멘트법을 이용하는 신뢰도지수에 기반한 접근법(MPFP search)이 널리 알려져 있으며, 최근 목표성능치에 기반한 접근법(MPTP search)이 새롭게 제안되었다. 본 논문에서는 이들 두 가지 접근법에 대한 정식화를 수행하고, 특히 탐색과정에서 소모적인 반복계산을 발견하고 제거하는 알고리즘을 제시하였다. 예제에서 두 접근법에 의한 확률론적 최적화를 수행하고 구조설계 최적화의 관점에서 두 접근법의 장단점을 비교·검토하였다.

  • PDF

최소자승법을 이용한 타원의 검출 (Detection of Ellipses using Least Square Method)

  • 이주용;서요한;이웅기
    • 한국컴퓨터정보학회논문지
    • /
    • 제1권1호
    • /
    • pp.95-104
    • /
    • 1996
  • 하프변환은 영상에서 직선을 검출하는데 유용하고 강력한 기법이다 그러나. 전통적인 하프변환의 확장은 원과 타원을 복구하는데 늦은 속포라 과도한 메모리로 인해 제한되어 왔다. 본 논문은 최소자승법을 이용하여 영상에서 하원을 검출하는 방법을 제안한다. 이 방법은 계산비용과 메모리 요구를 감소시킨다. 타원을 검출할 때 타원의 매개변수를 결정하기 위해서 하프변환의 누적을 이용하지 않고 타원의 기하학적 특징을 포함하는 특별한 점을 선택했다. 타원의 매개변수는 그 특별한 점을 사용한 최소자승법으로 계산된다.

  • PDF

TDABC에 의한 부산항 컨테이너터미널 원가분석과 유용성에 관한 연구 (A Study on the Usefulness and Cost Analysis of Busan Port Container Terminal by Time-Driven ABC)

  • 류동하;안기명;황성구
    • 한국항만경제학회지
    • /
    • 제30권3호
    • /
    • pp.89-120
    • /
    • 2014
  • 본 연구는 TDABC라는 새로운 접근 방법에 의해 컨테이너터미널에서 제공하는 항만하역 서비스에 대한 원가를 분석하여 터미널의 전략적 경영의사결정과 운영을 지원할 수 있는 방안을 제시하고자 하였다. 부산항의 H터미널 사례자료를 활용하여 기존의 개별원가계산방식과 ABC 및 TDABC 방식을 적용하였을 경우에 하역서비스별로 원가를 계산하여 TDABC에 의한 전략적 원가관리의 유용성을 살펴보았으며 개별원가계산방식과 전통적인 ABC에 의한 접근법의 한계를 극복하고 실무에서 검토할 수 있는 경영개선 방안을 제시하였다. 전통적 방법에 의한 개별원가분석은 한 컨테이너 터미널을 이용하는 다수의 고객 선사들의 작업조건과 물동량구성이 모두 상이함에도 불구하고 모든 고객선사의 원가가 동일하다고 가정하기 때문에 고객별 수익성 분석에 필요한 자료를 제공할 수 없다. 또한, 개별 고객과 터미널 하역요금 협상시 원가에 대한 자료를 제공할 수 없으므로 형평성에 맞는 요율이나 또는 합리적 수순의 요율을 설계하는 과정을 지원하지 못하며, 하역요율이 원가 수준에 관계없이 터미널의 협상력과 수요공급 상우월적 지위에 의하여 전적으로 결정되게 되는 단점이 있다. 그러나, TDABC 방식을 적용하였을 경우에는 미사용 시설원가분석이 가능하고 하역서비스별 및 프로세스별 수익성분석이 가능하여 적정하역요율 및 적정임대료 결정에 유용한 것으로 실증되었다.

Auction 알고리즘의 수학적 등가와 ${\varepsilon}$-이완법을 사용한 PCB 설계에 관한 연구 (A Study on using the Mathematical Equivalence and ${\varepsilon}$-Relaxation of Auction Algorithm for PCB Design)

  • 우경환;이용희;이천희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 제13회 춘계학술대회 및 임시총회 학술발표 논문집
    • /
    • pp.1133-1138
    • /
    • 2000
  • 최소비용 선형 망 흐름 문제가 동등한 할당 문제로 변환될 수 있으며, 또한 선형 망 흐름 문제를 해결하기 위한 전통적 방법은 단순 싸이클 흐름을 변환시킴으로서 원시 비용을 개선하는 방법이다. Auction 알고리즘이 각각의 반복에서 분산계산을 제시하는 개체와 초기의 대상 가격을 선택하기 위하여 몇 개의 특별한 법칙과 함께 동일한 문제에 적용이 될 때, 개체는 ${\varepsilon}$-이완법의 형태에서 획득할 수 있다. 본 논문은 할당 문제를 해결하기 위한 방법으로 최소비용 흐름 문제를 일반화 시켜, 전형적인 반복에 최소비용 흐름 문제, 수학적 등가에 의한 최소비용 흐름 문제를 연구하였고, 최소비용 흐름 측면에서 수송문제의 확장과 ${\varepsilon}$-이완법을 도출하여 이를 PCB 설계에 응용하고자 하였다.

  • PDF

새로운 거리 가중치와 지역적 패턴을 고려한 적응적 선형보간법 (Adaptive Linear Interpolation Using the New Distance Weight and Local Patterns)

  • 김태양;전영균;정제창
    • 한국통신학회논문지
    • /
    • 제31권12C호
    • /
    • pp.1184-1193
    • /
    • 2006
  • 영상 보간은 영상 처리 분야에서 전통적으로 많이 연구되어 왔고 널리 사용되고 있다. 그에 따라 다양한 보간 능력과 계산 복잡도를 갖는 보간법들이 많이 시도되고 있다. 이 논문에서는 기존의 선형 보간법을 위한 새로운 거리 가중치 개념과 보간되는 값의 상하, 좌우 지역적 패턴을 고려하여 반영하는 적응적 선형 보간법(New Adaptive Linear Interpolation : NAL Interpolation)을 제안한다. 새로운 거리 가중치는 기존의 거리에 선형적으로 비례하는 가중치의 개념에서 벗어나 가까운 화소에 더욱 더 영향을 많이 받는 특성을 이용하여 거리 가중치를 2차, 3차 다항식으로 개선한 것이다. 또한 NAL 보간법은 보간되는 화소의 상하, 좌우 패턴을 고려하는 선형 보간법으로 MF(magnification factor)의 변화에 따라 보다 선명한 이미지를 쉽게 얻기 위해서 보간하기 전 MF에 따라 패턴을 반영하는 정도를 결정하는 패턴 가중치를 이용한다. 실험 결과에서 제안된 보간법은 계산 복잡도 면에서 기존의 bicubic 보간법 보다 훨씬 간단할 뿐만 아니라 더 좋은 PSNR(peak signal-to-noise ratio)를 갖고 보다 선명한 화질의 영상으로 보간하였다.

18세기 후반 조선산학서에 나타난 평면도형 관련 내용 분석 (A study on the contents related to the plane figures of Joseon-Sanhak in the late 18th century)

  • 최은아
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제61권1호
    • /
    • pp.47-62
    • /
    • 2022
  • 본 연구는 18세기 후반 조선산학서의 기하 영역 중 평면도형 관련 내용들이 이전 시기와 비교하여 어떻게 차별화되어 다루어졌는지 살펴보고, 평면도형과 관련된 설명과 계산법의 변화, 문제해결과정에서 수학적 논리의 엄밀성, 새롭게 등장한 수학 주제에 초점을 맞추어 분석하였다. 이를 위해 본 연구에서는 18세기 후반에 저술된 서명응의 <고사십이집>과 황윤석의 <산학입문>, 홍대용의 <주해수용>을 주 분석문헌으로 선정하여 이전시기의 <묵사집산법>, <구일집>과 비교하였다. 분석 결과, 도형을 측정 대상으로서가 아니라 성질을 탐구하는 대상으로 설명하고, 서법(西法)을 별해로 추가 제시하거나 기존 풀이법을 대체한 사례가 확인되었다. 또한 일부 문제에서 수학적 근거를 토대로 계산법의 타당성을 기술하거나 도형그림을 삽입한 도해(圖解)를 통한 설명, 근삿값에 대한 명확한 인식과 보다 정밀한 근삿값 설명 등은 수학적 논리의 엄밀성을 추구한 대표적 사례였다. 오늘날의 삼각함수에 해당하는 팔선(八線)과 삼각형의 구성요소 사이의 관계를 일반 삼각형으로 확장한 사례는 18세기 후반에 새롭게 등장한 기하 영역 주제였다. 이상은 18세기 후반의 조선산학이 서양수학의 이론적이고 논증적인 전개 양식을 점진적으로 수용한 근거라고 할 수 있다.

Weil 정리를 이용한 효율적인 타원곡선의 위수 계산법의 구현 (Efficient Implementations of Index Calculation Methods of Elliptic Curves using Weil's Theorem)

  • 김용태
    • 한국전자통신학회논문지
    • /
    • 제11권7호
    • /
    • pp.693-700
    • /
    • 2016
  • 현재 사용되고 있는 유한체 GF(q)위의 non-supersingular 타원곡선 이산대수문제에 기반한 공개키 암호법의 안전성을 보장하기 위해서는 타원곡선의 위수의 크기와 소인수의 크기를 계산하는 일이 매우 중요하다. 그런데 타원곡선의 위수를 구하는 전통적인 방법인 Schoof 알고리즘은 매우 복잡하여 지금도 개선작업이 진행중이다. 본 논문에서는 복잡한 Schoof 알고리즘을 피하기 위하여, 표수가 2인 유한체의 합성체$GF(2^m)=GF(2^{rs})=GF((2^r)^s)$ 위에서 Weil 정리를 이용하여 타원곡선의 위수를 계산하는 방법을 제안한다. 또한, 그에 따른 알고리즘과 그 알고리즘을 적용한 프로그램을 실행하여 타원곡선 암호법에 사용될 수 있는 효율적인 곡선으로 ${\sharp}E(GF(2^5))=36$일 때의 합성체 $GF(2^5)^{31})$ 위에서 위수에 $10^{40}$ 이상인 소인수를 포함하는 non-supersingular 타원곡선을 찾을 수 있었다.