DOI QR코드

DOI QR Code

Efficient Implementations of Index Calculation Methods of Elliptic Curves using Weil's Theorem

Weil 정리를 이용한 효율적인 타원곡선의 위수 계산법의 구현

  • Kim, Yong-Tae (Dept. of Mathematics Education, Gwangju National University of Education)
  • 김용태 (광주교육대학교 수학교육과)
  • Received : 2016.05.31
  • Accepted : 2016.07.24
  • Published : 2016.07.31

Abstract

It is important that we can calculate the order of non-supersingular elliptic curves with large prime factors over the finite field GF(q) to guarantee the security of public key cryptosystems based on discrete logarithm problem(DLP). Schoof algorithm, however, which is used to calculate the order of the non-supersingular elliptic curves currently is so complicated that many papers are appeared recently to update the algorithm. To avoid Schoof algorithm, in this paper, we propose an algorithm to calculate orders of elliptic curves over finite composite fields of the forms $GF(2^m)=GF(2^{rs})=GF((2^r)^s)$ using Weil's theorem. Implementing the program based on the proposed algorithm, we find a efficient non-supersingular elliptic curve over the finite composite field $GF(2^5)^{31})$ of the order larger than $10^{40}$ with prime factor larger than $10^{40}$ using the elliptic curve $E(GF(2^5))$ of the order 36.

현재 사용되고 있는 유한체 GF(q)위의 non-supersingular 타원곡선 이산대수문제에 기반한 공개키 암호법의 안전성을 보장하기 위해서는 타원곡선의 위수의 크기와 소인수의 크기를 계산하는 일이 매우 중요하다. 그런데 타원곡선의 위수를 구하는 전통적인 방법인 Schoof 알고리즘은 매우 복잡하여 지금도 개선작업이 진행중이다. 본 논문에서는 복잡한 Schoof 알고리즘을 피하기 위하여, 표수가 2인 유한체의 합성체$GF(2^m)=GF(2^{rs})=GF((2^r)^s)$ 위에서 Weil 정리를 이용하여 타원곡선의 위수를 계산하는 방법을 제안한다. 또한, 그에 따른 알고리즘과 그 알고리즘을 적용한 프로그램을 실행하여 타원곡선 암호법에 사용될 수 있는 효율적인 곡선으로 ${\sharp}E(GF(2^5))=36$일 때의 합성체 $GF(2^5)^{31})$ 위에서 위수에 $10^{40}$ 이상인 소인수를 포함하는 non-supersingular 타원곡선을 찾을 수 있었다.

Keywords

References

  1. A. Menezes, Elliptic Curve Public Key Cryptosystems. Kluber Academic Publishers, Dordrecht, 1993.
  2. H. Hasse, "Zur Theorie der abstrakten elliptischen Funktionenkorper, I,II&III," Crelle 174, 1936, pp. 173-177.
  3. R. Schoof, "Elliptic curves over finite fields and the computation of square roots mod p," Mathematics of Computation, vol. 44, no. 170, 1985, pp. 483-494.
  4. N. Koblitz, "Constructing elliptic curve cryptosystems in characteristic 2," Advances in Cryptography-CRYPTO'90, Proc., LNCS 537, Springer, Santa Barbara, USA, Aug., 1991, pp. 156-167.
  5. U. Choi and S. Cho, "Design of Binary Sequence with optimal Cross-correlation Values," J. of the Korea Institute of Electronic Communication Sciences, vol. 6, no. 4, 2011, pp. 539-544.
  6. S. Cho, J. Kim, U. Choi, and S. Kim, "Cross-correlation of linear and nonlinear GMW-sequences generated by the same primitive polynomial on GF($2^p$)," The Korea Institute of Electronic Communication Sciences 2011 Spring Conf. Busan, Korea, vol. 5, no. 1, June 2011, pp. 155-158.
  7. T. Satoh, "On p-adic point counting algorithms for elliptic curves over finite fields," Algorithmic Number Theory, 5th Int. Symp., ANTS-V, Lecture Notes on Computer Science 2369, Springer, Berlin, July, 2002, pp. 43-66.
  8. J. von zur Gathen and J. Garhard, Modern Computer Algebra. 3rd Ed., Cambridge University Press, Cambridge, 2013.
  9. L. C. Washington, "Elliptic Curves; Number Theory and Cryptography," New York: Chapman&Hall/CRC, 2003.
  10. S. Wolfram, Mathematica. 4th Ed., Wolfram Champaign Research, Inc., New York, 1999.
  11. H. Kim, S. Cho, M. Kwon, and H. An, "A study on the cross sequences," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 1, 2012, pp. 61-67. https://doi.org/10.13067/JKIECS.2012.7.1.061