• Title/Summary/Keyword: 적층성능

Search Result 416, Processing Time 0.027 seconds

A Study on the Insulation Performance of Composite Multilayer Insulation by Applciation of Heat Storage Tank (축열조용 복합 다층 단열재의 단열 성능 연구)

  • Choi, Gyuhong;Hwang, Seung Sik;Shin, Donghoon;Park, Woo Sung;Park, Dae Woong;Son, Seung Kil;Chung, Tae Yong
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.82-87
    • /
    • 2014
  • MLI(Multi-layer Insulation) is widely used to get highly insulating on cryogenic system in order to reduce heat loads. MLI for satellites thermal performance is changed by materials and laminated method. In this study, a composite multilayer insulation by application of heat stroage tank performance were compared with materials and laminated to change the way. Experimental methods of the KS C 9805 was used, the composite multilayer insulation and EPS was compared with the insulation performance. A method for analysis of experimental results is the equivalent thickness about CMI and the insulation performance were used to compare thermal conductance. As a results, the equivalnet thickenss and the thermal conductance of the composite multilayer insulation were smaller than the EPS and the thermal performance are more excellent. In addition, the configuration of the composite multilayer insulation materials and laminated method varies depending on the overall heat transfer coefficient was confirmed.

저가 고효율 실리콘계 (protocrystalline Si/$\mu$c-Si:H) 적층형 박막 태양전지 개발

  • Im, Goeng-Su
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.191-202
    • /
    • 2005
  • 비정질 실리콘 태양전지 대신에 열화가 더 적은 프로터결정 실리콘(pc-Si:H)을 상층전지 흡수층으로 사용한 고효율 실리콘계 적층형(pc-Si:H/$\mu$c-Si:H) 박막 태양전지를 개발하였다. 우선, 높은 전도도와 넓은 에너지 밴드갭 특성을 갖는 p-a-SiC:H 박막을 개발하였고, p/i 계면의 특성 향상을 위해 p-nc-SiC:H 완충층을 개발하였다. 프로터결정 실리콘 다층막을 제작하고 FTIR, 평면 TEM, 단면 TEM 측정을 통해 프로터결정 실리콘 다층막의 우수한 열화 특성의 원인을 규명하였다. 적층형 태양전지의 성능향상을 위해 n-p-p 구조의 터널접합을 제안, 제작하고 특성을 분석하였으며, pc-Si:H/a-Si:H 적층형 태양전지에 적용하여 성능향상을 이루었다. 양질의 하층전지용 마이크로결정 실리콘 박막을 증착하기 위하여 광CVD법과 플라즈마CVD법을 결합한 2단계 마이크로결정 실리콘 증착법을 개발하였다.

  • PDF

Development of multilayer actuators with single crystals for implantable middle ears (압전 단결정 재료를 이용한 인공중이용 적층형 액츄에이터의 개발)

  • Seon J. H.;Lee S. S.;Roh Y. R.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.315-318
    • /
    • 2004
  • 이식형 인공중이에 있어 그 특성은 트랜스듀서의 성능에 따라 크게 좌우된다. 따라서 성능이 우수한 인공중이 제작을 위해서는 트랜스듀서의 주파수 특성 및 구동 성능이 우수해야 하고 인체 내 이식을 위해서는 그 크기가 작아야 한다. 본 연구에서는 인공중이용 소형 트랜스듀서로서 단결정 압전 재료인 PMN-PT를 이용한 적층형 액츄에이터를 제안하였다. 또한 제안된 모델을 두께 0.2mm를 갖는 $1mm{\times}1mm$ 크기의 PMN-PT 시편을 14층으로 쌓아 2.8mm 두께로 제작하였고, 이때 절연층으로 P.R을 사용하였다. 제작된 트랜스듀서의 성능은 Impedance Spectrum, 구동변위 측정 및 구동력의 계산을 통해 평가하였다. 이를 통해 PMN-PT를 재료로 사용한 적층형 액츄에이터의 성능이 기존의 PZT를 재료로 사용한 Bimorph 액츄에이터보다 훨씬 뛰어날 뿐만 아니라 청각 장애가 심한 고도난청자들에게 적용이 가능한 이식형 인공중이용 트랜스듀서로서 충분한 성능을 가지고 있음을 입증하였다.

  • PDF

Experimental Evaluation of Seismic Performance of Laminated Elastomeric Bearing and Lead-Rubber Bearing (적층고무베어링과 납-고무베어링의 내진 성능에 관한 실험적 평가)

  • 김대곤;이상훈;김대영;박칠림
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.53-62
    • /
    • 1998
  • Experimental studies for the laminated elastomeric bearing and the lead-rubber bearing, those are often used to improve the seismic capacity of the structures recently, are conducted to evaluate the seismic capacity of the bearings. The shear stiffness of the bearings decreases as the shear strain amplitude or the constant axial load level increases, but not sensitive to the strain rates effect. Bearings are strong for the axial compression but weak for the axial tension.

  • PDF

Performance Evaluation for Bending Strength and Tensile Type Shear Strength of GFRP Reinforced Laminated Wooden Pin (GFRP보강적층목재핀의 휨강도 및 인장형 전단내력 성능평가)

  • Song, Yo-Jin;Jung, Hong-Ju;Kim, Dae-Gil;Kim, Sang-Il;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.258-265
    • /
    • 2014
  • By replacing the previous metal connector on the joints of timber structure, the GFRP reinforced laminated wooden pin was produced using a wooden material and Glass fiber reinforced plastic(GFRP) composite laminate. In addition, using the reinforced wooden pin, the tensile type shear strength test was conducted. Based on the result of the bending strength test of the reinforced laminated wooden pin according to the GFRP arrangement, a specimen(Type-A) with a single insertion of GFRP for each layer have shown the most favorable performance. Also, it was verified that densified specimen hot pressed for an hour at the temperature of $150^{\circ}C$ and with the oppression pressure $1.96N/mm^2$ have shown the improved performance of 1.57 times than the specimen without the densification. And in the bending strength test considering the load direction, edgewise have shown a higher performance of 3.51 times than the flatwise. A shear strength test was conducted using the Type-A reinforced laminated wooden pin which have shown a moderate performance on the test. Based on the test conducted by differentiating the type of the joint plate and the connector, compared to the specimen(Type-DS) applied with the drift pin and steel plate, the specimen( Type-WL) applied with the GFRP reinforced laminated wooden pin and GFRP reinforced wooden laminated plate have shown 1.12 times higher shear strength and also have shown an excellent toughness even after the maximum load.

헬리컬 및 직각 적층두께를 고려한 알루미늄-복합재료 압력용기의 최적설계

  • 이동건;윤영복;신돈수;하성규
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.19-19
    • /
    • 1998
  • 라이너를 포함한 필라멘트 와인딩 복합재 압력용기의 성능향상을 위한 효율적인 구조최적 설계방안을 제시하였다. 이를 위해 온도효과가 고려된 비선형 유한요소법을 이용하여 각 층에서의 응력해석과 파손해석을 수행하였다. 또한 설계변수로 라이너의 두께와 헬리컬 적층두께, 실린더를 따라 변하는 직각 적층두께를 설정하였다. 모든 설계변수들에 대한 강도비 민감도를 유도하였으며 헬리컬 적층두께에 대한 강도비 민감도를 유지하기 위해 측지 등장력 돔설계 방법을 고려하였다. 구조 최적설계결과, 실린더를 따라 직각 적층두께를 최적으로 분포시켜 강성을 효과적으로 배열하였으므로 적층두께를 일정하게 고려한 경우보다 더 경량화 시킬 수 있었다.

  • PDF

Prediction for Slag Mass Accumulation in the Kick Motor (킥모터 슬래그 적층량 예측)

  • Jang, Je-Sun;Kim, Byung-Hun;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.217-220
    • /
    • 2008
  • Slag mass deposition was required to predict accurate performance of kick motor (KM) system. Slag mass accumulation was analyzed through the aluminum oxide particle paths to predict slag mass deposition. Numerical analysis to solve both flow field and droplet accumulation was performed with Fluent 6.3 program. The effects for the acceleration and diameters of the aluminum oxide particles was analyzed, finally total slag mass accumulation was acquired. It confirmed that the slag mass deposition was agreed well with previously slag mass prediction based on KM ground test.

  • PDF

Performance Improvement of Polymer Deposition System by Nozzle Guide and Its Application to Washer Scaffold Fabrication (노즐 가이드를 적용한 폴리머 적층 시스템의 Washer Scaffold 제작을 위한 성능 개선)

  • Sa, Min-Woo;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.249-257
    • /
    • 2013
  • Rapid prototyping was used to design and develop a three-dimensional (3D) scaffold for tissue engineering application. In this study, the nozzle guide (TB-CP-HN, MUSASHI ENGINEERING, INC., JAPAN) used with the syringe of the polymer deposition system (PDS) was evaluated by measuring the scaffold line width and height. 3D scaffolds were fabricated using a biodegradable polymer called poly-caprolactone (PCL). The PCL polymer can be deposited from the needle of a syringe using a 200-${\mu}m$ precision nozzle, at a pressure of 600 kPa and temperature of $125^{\circ}C$. The advantages and improvements in this nozzle guide were addressed through washer scaffold fabrication. Overall, this research indicated that the fabrication of a complex-shaped scaffold using an enhanced polymer deposition system may have potential for tissue engineering.

Experimental Study on Ultimate Tensile Failure Properties of Laminated Rubber Bearings (적층고무받침의 극한인장파괴 특성에 관한 실험적 연구)

  • Oh, Ju;Jung, Hie-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.303-309
    • /
    • 2011
  • Laminated rubber bearing is the most commonly used device for seismic base isolation of bridge structures. It is important to know performance and behavior characteristics of the laminated rubber bearings. The main evaluation factors of the rubber bearing are classified as compressive, shear and tensile behavior characteristics. The reference data of compressive and shear characteristics are rich, but the reference data of tensile characteristics is scarce. In this study, tensile test results of the rubber bearing with variation of shape factor and shear deformation are investigated for mechanical property. When tensile deformation in normal condition is increasing, tensile cycle behavior curve becomes non-linear and tensile breaking point is 300%. On the other hand, tensile breaking point is shear deformation condition is about 40%. Furthermore, when shape factor is lower, tensile breaking point is decrease. This results mean that tensile breaking point is decreased in triaxial tensile deformation because of cracks caused by internal void of the rubber bearings. This experimental data can be used as the reference data of tensile characteristics for designing seismic isolation of structures.

Literature Review on Rheological Properties and Required Performances of 3D Printable Cementitious Materials (3D 프린팅 시멘트계 재료의 유변학적 물성과 요구 성능에 관한 문헌 조사)

  • Oh, Sangwoo;Hong, Geuntae;Choi, Seongcheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.41-49
    • /
    • 2021
  • 3D printing techniques have been recently adopted in the construction industry. It mainly utilizes additive manufacturing which is the fabrication process depositing successive layers of materials without any formworks. Conventional cementitious materials may not be directly applicable to 3D printing because 3D printable cementitious materials is required to satisfy such characteristics as pumpability, extrudability, and buildability in a fresh state. This study aimed to investigate rheological properties and required performances of 3D printable cementitious materials, by reviewing existing studies. Test methods and equipments, evaluation results and characteristics of mixture additives were compared. Based on reviews of existing studies, this study indicates that the viscosity is mainly relevant to the pumpability of 3D printable materials whereas the yield stress and thixotropy are important in securing buildability of the materials.