• Title/Summary/Keyword: 저온 스트레스

Search Result 151, Processing Time 0.037 seconds

Effects of electrical stress on low temperature p-channel poly-Si TFT′s (저온에서 제작된 p-채널 poly-Si TFT의 전기적 스트레스 효과)

  • 백희원;임동규;임석범;정주용;이진민;김영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.324-327
    • /
    • 2000
  • In this paper, the effects of negative and positive bias stress on p-channel poly-Si TFT's fabricated by excimer laser annealing have been investigated After positive and negative bias stress, transcon-ductance(g$_{m}$) is increased because of a reduction of the effective channel length due to the injected electron in the gate oxide. In the positive bias stress, the injection of hole is appeared after stress time of 3600sec and g$_{m}$ is decreased. On the other hand, the gate voltage at the maximum g$_{m}$, S-swing and threshold voltage(V$_{th}$) are decreased because of the interface state generation due to the injection of electrons into the gate oxide.e.ide.e.

  • PDF

Study on Matter Production and Phothsynthetic Characteristics in Wild Vegetable(Chwinamul) (취나물류의 물질생산과 광합성특성에 관한 연구 II. 수분스트레스하에서 고온 및 저온처리가 취나물류의 광합성속도에 미치는 영향)

  • 조동하
    • Korean Journal of Plant Resources
    • /
    • v.11 no.3
    • /
    • pp.307-314
    • /
    • 1998
  • The response of water stree under high and low temperatures, was shown differently according to the longer the suspension period of water supply. Leaf photosynthetic rate(LPS), leaf water potential(WP), relative leaf water content and relative soil water content were lower. At the higher temperatures, the percentate of reduction in LPS and WP was greater than at low temperatures. It is suggested that evaporation rate should be higher in the high temperature than the lower temperature. Also leaf water potential was lower at high temperature than at low temperature. After the 9 th day of treatment , LSP was remarkably reduced at high temperature, but the reduction of LPS was not significant at low temperature. Solidago virga-aurea var. asiatic that maintained LPS of 3rd day after treatment was more strong than other varieties at low temperatures. The silting and curling of leaves were observed symptoms of stress on the 9th day at the both temperatures. The leaves of aster scaber and Ligularia fischeri turned red on the 9th day after treatment at low temperature.

  • PDF

Differences on Growth, Photosynthesis and Pigment Contents of Open-pollinated Pinus densiflora Families Under Elevated Temperature and Drought (온도 증가와 건조 스트레스에 따른 소나무 풍매차대묘의 가계간 생장, 광합성 및 광색소 함량 차이)

  • Kim, Gil Nam;Han, Sim-Hee;Park, Gwan Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.285-296
    • /
    • 2014
  • The impacts of high temperature and drought were studied on the seedlings of three families (superiorgangwon74, intermediate-gangwon77 and inferior-gangwon132) of P. densiflora which had been selected by the based on the growth indexes of 32-year-old. The seedlings were grown in controlled-environment growth chambers with combinations of four temperatures ($-3^{\circ}C$, $0^{\circ}C$, $+3^{\circ}C$ $+6^{\circ}C$; based on the monthly average for 30 years in Korea) and two water conditions (control, drought). The growth performance, photosynthetic parameters and photosynthetic pigment contents were measured at every 30 days under four temperatures and drought condition, and the end of each treatment. The superior family showed higher relative diameter at root collar growth rate and the dry weight than intermediate and inferior family in all treatments. Under elevated temperature and drought condition, growth rate was decreased, and seedlings showed lower growth rate than that of control in three families under low temperature. Photosynthetic rate, stomatal conductance and transpiration rate of three families decreased with the increase of temperature and drought condition, and that of seedlings under low temperature was lower than control. But under elevated temperature and drought condition, water use efficiency increased in three families. Photosynthetic pigment contents of leaves decreased under the increase of temperature and drought condition, but chlorophyll a/b ratio increased with the increase of temperature and drought condition in three families. The superior family showed higher total chlorophyll content than intermediate and inferior family in all treatments. In conclusion, P. densiflora is under changed temperature and drought condition, growth was decreased, seedlings more affected in elevated temperature than that of decreased temperature. The increase in monthly average temperature in Korea of more than $6^{\circ}C$, P. densiflora seedling growth in depending on region may decrease. In this study, the superior family(gangwon74) showed more excellent growth and physiological responses than intermediate (gangwon77) and inferior(gangwon132) family under changes temperature and drought.

Effect of Sigma Factor ${\sigma}^{B}$ on Biofilm Formation of Listeria monocytogenes in High Osmotic and Low Temperature Conditions (고삼투압 및 저온 조건에서 sigma factor ${\sigma}^{B}$가 Listeria monocytogenes biofilm 생성에 미치는 영향)

  • Park, Sang-Gyu;Park, Shin
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.456-460
    • /
    • 2004
  • Effects of sigma factor (${\sigma}^{B}$) on biofilm formation in Listeria monocytogenes 10403S and ${\sigma}^{B}-deficient$ sigB null mutant were studied under high osmotic and low temperature conditions. In brain heart infusion (BHI) medium containing 6% NaCl, wild type 10403S and ${\sigma}^{B}-deficient$sigB null mutant formed biofilms of $6.83{\pm}0.38\;and\;5.33{\pm}0.45\;log\;cfu/cm^{2}$, respectively. L. monocytogenes 10403S in BHI medium containing 6% NaCl formed 4.7 times larger biofilm than without NaCl. Culture of L. monocytogenes 10403S and sigB null mutant at $4^{\circ}C$ did not show any significant differences in biofilm formation. The results suggest biofilm formation is activated by ${\sigma}^{B}$ and NaCl, whereas not affected by low temperature stress in L. monocytogenes 10403S. More studies are necessary to determine biofilm formation mechanism in osmotolerant L. monocytogenes.

Monolithic 3D-IC 구현을 위한 In-Sn을 이용한 Low Temperature Eutectic Bonding 기술

  • Sim, Jae-U;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.338-338
    • /
    • 2013
  • Monolithic three-dimensional integrated circuits (3D-ICs) 구현 시 bonding 과정에서 발생되는 aluminum (Al) 이나 copper (Cu) 등의 interconnect metal의 확산, 열적 스트레스, 결함의 발생, 도펀트 재분포와 같은 문제들을 피하기 위해서는 저온 공정이 필수적이다. 지금까지는 polymer 기반의 bonding이나 Cu/Cu와 같은 metal 기반의 bonding 등과 같은 저온 bonding 방법이 연구되어 왔다. 그러나 이와 같은 bonding 공정들은 공정 시 void와 같은 문제가 발생하거나 공정을 위한 특수한 장비가 필수적이다. 반면, 두 물질의 합금을 이용해 녹는점을 낮추는 eutectic bonding 공정은 저온에서 공정이 가능할 뿐만 아니라 void의 발생 없이 강한 bonding 강도를 얻을 수 있다. Aluminum-germanium (Al-Ge) 및 aluminum-indium (Al-In) 등의 조합이 eutectic bonding에 이용되어 각각 $424^{\circ}C$$454^{\circ}C$의 저온 공정을 성취하였으나 여전히 $400^{\circ}C$이상의 eutectic 온도로 인해 3D-ICs의 구현 시에는 적용이 불가능하다. 이러한 metal 조합들에 비해 indium (In)과 tin (Sn)은 각각 $156^{\circ}C$$232^{\circ}C$로 굉장히 낮은 녹는점을 가지고 있기 때문에 In-Sn 조합은 약 $120^{\circ}C$ 정도의 상당히 낮은eutectic 온도를 갖는다. 따라서 본 연구팀은 In-Sn 조합을 이용하여 $200^{\circ}C$ 이하에서monolithic 3D-IC 구현 시 사용될 eutectic bonding 공정을 개발하였다. 100 nm SiO2가 증착된 Si wafer 위에 50 nm Ti 및 410 nm In을 증착하고, 다른Si wafer 위에 50 nm Ti 및 500 nm Sn을 증착하였다. Ti는 adhesion 향상 및 diffusion barrier 역할을 위해 증착되었다. In과 Sn의 두께는 binary phase diagram을 통해 In-Sn의 eutectic 온도인 $120^{\circ}C$ 지점의 조성 비율인 48 at% Sn과 52 at% In에 해당되는 410 nm (In) 그리고 500 nm (Sn)로 결정되었다. Bonding은 Tbon-100 장비를 이용하여 $140^{\circ}C$, $170^{\circ}C$ 그리고 $200^{\circ}C$에서 2,000 N의 압력으로 진행되었으며 각각의 샘플들은 scanning electron microscope (SEM)을 통해 확인된 후, 접합 강도 테스트를 진행하였다. 추가로 bonding 층의 In 및 Sn 분포를 확인하기 위하여 Si wafer 위에 Ti/In/Sn/Ti를 차례로 증착시킨 뒤 bonding 조건과 같은 온도에서 열처리하고secondary ion mass spectrometry (SIMS) profile 분석을 시행하였다. 결론적으로 본 연구를 통하여 충분히 높은 접합 강도를 갖는 In-Sn eutectic bonding 공정을 $140^{\circ}C$의 낮은 공정온도에서 성공적으로 개발하였다.

  • PDF

Antioxidant Enzyme Activity and Cell Membrane Stability of Korean Bermudagrass Genotypes Different in Ploidy at Dormant Stage (배수성이 다른 자생 버뮤다그래스의 휴면 전후 항산화 효소활성 및 세포막 안정성 변화)

  • Lee, Geung-Joo;Lee, Hye-Jung;Ma, Ki-Yoon;Jeon, Young-Ju;Kim, In-Kyung
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.1
    • /
    • pp.17-21
    • /
    • 2011
  • Korean bennudagrass collections showed diverse genetic variations in their morphology, growth habit, and cytological aspects. Chromosome number and nuclear DNA content of the bennudagrasses indicated a ploidy level ranging from triploid (2n=3x) to hexaploid (2n=6x). In this study, we investigated the different responses of antioxidant enzymes (superoxide dismutase, catalase, peroxidase, ascorbate peroxidase) and cell membrane stability of those bennudagrass cytotypes to lower temperature and shorter day length, which meets a dormant induction in Korea. All the antioxidant enzymes were found to be higher during dormant stage, while the heme-containing catalase which converts hydrogen peroxide ($H_2O_2$) to water and oxygen molecules was activated before dormant initiation in the three cytotypes except for hexaploid bennudagrass. The triploid and tetraploid which exhibited relatively finer leaves and a rapid establishment speed were found to show increased activities of superoxide dismutase and peroxidase enzyme. The malondialdehyde(MDA) which is a product of lipid peroxidation in the cell membrane damaged by the hydroxyl radical was increased in all cytotypes as temperature declined, and tri- and tetraploids which had more protective antioxidant enzymes demonstrated a significantly lower MDA production. Similarly electrolyte leakage was higher in penta- and hexaploidy, seemingly more damage to cell membrane when low temperature was implemented. Results indicated that antioxidant responses of different cytotypes were genetically specific, which needs to be investigated the relevance with the low temperature tolerance in the bermudagrass further at the molecular level.

Oxidative Stress Inhibitory Effects of Low Temperature-Aged Garlic (Allium sativum L.) Extracts through Free Radical Scavenging Activity (저온숙성마늘의 라디칼 소거 활성을 통한 산화스트레스 억제 효과)

  • Hwang, Kyung-A;Kim, Ga Ram;Hwang, Yu-Jin;Hwang, In-Guk;Song, Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.1
    • /
    • pp.27-34
    • /
    • 2016
  • Garlic has drawn attention as a food material for its anti-oxidative and anti-inflammatory properties as well as for prevention and treatment of cancer. In order to increase efficiency, various aging methods for garlic have been attempted. In particular, thermally processed garlic is known to have higher biological activities due to its various chemical changes during heat treatment. Therefore, in this study, we investigated the anti-oxidative effects of garlic extracts aged at low temperature ($60{\sim}70^{\circ}C$). In the results, 2,2-diphenyl-1-picrylhydrazyl and 2,2-azino-bis (3-ethylbenzo-thiazoline-6-sulfonate) radical scavenging activities and ferric reducing ability of low temperature-aged garlic (LTAG) were similar to those of raw garlic. LTAG also showed decreased lipopolysaccharide (LPS)-induced production of reactive oxygen species, although there were not significant differences among samples. In addition, xanthine oxidase activity was inhibited by LTAG; the 15 days and $60^{\circ}C$ extract showed outstanding inhibition compared with the others. To understand the molecular mechanisms behind the anti-oxidative activity of LTAG, we performed quantitative real-time PCR analysis. The 30 days and $70^{\circ}C$ extract upregulated mRNA expression of antioxidant enzymes such as Cu/Zn-superoxide dismutase (SOD), Mn-SOD, glutathione peroxidase, and catalase in LPS-stimulated RAW 264.7 cells. This result indicates that LTAG can be a functional food as a nature antioxidant and antioxidant substance.

Influence of Chilling Stress on Photosynthetic and Physiological Reponses of Cucumber (Cucumis sativus L.) Seedlings (오이묘에 냉온 스트레스가 광합성 및 생리반응에 미치는 영향)

  • Yooun Il Nam;Young Hoe Woo
    • Journal of Bio-Environment Control
    • /
    • v.10 no.3
    • /
    • pp.159-164
    • /
    • 2001
  • This study were conducted to investigate the influence of chilling on photosynthetic rate, root activity, contents of total sugars and fatty acids of cucumber seedlings grown in a greenhouse. Even though photosynthetic activity of seedlings exposed to $0^{\circ}C$ for 5 hours was little or insignificantly influenced, it was reduced by 52.8% and 67.7% in seedlings exposed to the same temperature for an extended 10 and 24 hours, respectively. Photosynthetic rate decreased significantly when seedlings were illuminated, as compared to continuously held under darkness, during 15 hours of chilling treatment at 3$^{\circ}C$. Recovery of photosynthetic ability was also retarded by illumination during a recovery period after chilling treatment. Root activity, as measured by the oxidation power of $\alpha$-naphtylamine, was significantly reduced by chilling treatment at 0 to 6$^{\circ}C$, but amount of bleeding xylem sap collected at 40 days after chilling treatment was not significantly different among treatments. Total sugar content increased by 12 and 23% as compared to the control in seedlings chilled for 24 hours, respectively, at 3$^{\circ}C$. Contents of unsaturated linolenic and oleic acids increased, while content of saturated palmitic acid decreased with chilling treatment.

  • PDF

Construction and Analysis of Binary Vectors for Co-Overexpression, Tissue- or Development-Specific Expression and Stress-Inducible Expression in Plant (식물에서 표적 유전자의 동시 과발현, 조직/발달 특이적 발현 및 스트레스 유도성 발현을 위한 binary 벡터의 제작과 분석)

  • Lee, Young-Mi;Park, Hee-Yeon;Woo, Dong-Hyuk;Seok, Hye-Yeon;Lee, Sun-Young;Moon, Yong-Hwan
    • Journal of Life Science
    • /
    • v.20 no.9
    • /
    • pp.1314-1323
    • /
    • 2010
  • In this study, we constructed various kinds of binary vectors with the pPZP backbone for co-overexpression, tissue- or development-specific expression and stress-inducible expression, and validated them for ectopic expression of target genes. Using a modified CaMV 35S promoter, a binary vector was generated for co-overexpression of two different genes and was confirmed to be efficient for overexpressing two different target genes at the same time and place. Binary vectors containing At2S3, KNAT1 or LFY promoters were constructed for tissue-specific or development-specific gene expression, and the binary vectors were suited for embryo/young seedling stage-, shoot apical meristem- or leaf primordia-specific expressions. Furthermore, the binary vectors containing RD29A or AtNCED3 promoters were validated as suitable vectors for gene expression induced by abiotic stresses such as high salt, ABA, MV and low temperature. Taken together, the binary vectors constructed in this study would be very useful for analyzing the biological functions of target genes and molecular mechanisms through ectopic expression.

Characteristics of Schottky Barrier Thin Film Transistors (SB-TFTs) with PtSi Source/Drain on glass substrate

  • O, Jun-Seok;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.199-199
    • /
    • 2010
  • 최근 평판 디스플레이 산업의 발전에 따라 능동행렬 액정 표시 소자 (AMOLED : Active Matrix Organic Liquid Crystral Display) 가 차세대 디스플레이 분야에서 각광을 받고있다. 기존의 TFT-LCD에 사용되는 a-Si:H는 균일도가 좋지만 전기적인 스트레스에 의해 쉽게 열화되고 낮은 이동도는 갖는 단점이 있으며, ELA (Eximer Laser Annealing) 결정화 poly-Si은 전기적인 특성은 좋지만 uniformity가 떨어지는 단점을 가지고 있어서 AMOLED 및 대면적 디스플레이에 적용하기 어렵다. 따라서 a-Si:H TFT보다 좋은 전기적인 특성을 보이며 ELA 결정화 poly-Si TFT보다 좋은 uniformity를 갖는 SPC (Solid Phase Crystallization) poly-Si TFT가 주목을 받고있다. 본 연구에서는 차세대 디스플레이 적용을 위해서 glass 기판위에 증착된 a-Si을 SPC 로 결정화 시킨 후 TFT를 제작하고 평가하였다. 또한 TFT 형성시에 저온공정을 실현하기 위해서 소스/드레인 영역에 실리사이드를 형성시켰다. 소자 제작시의 최고온도는 $500^{\circ}C$ 이하에서 공정을 진행하는 저온 공정을 실현하였다. Glass 기판위에 a-Si이 80 nm 증착된 기판을 퍼니스에서 24시간 동안 N2 분위기로 약 $600^{\circ}C$ 에서 결정화를 진행하였다. 노광공정을 통하여 Active 영역을 형성시키고 E-beam evaporator를 이용하여 약 70 nm 의 Pt를 증착시킨 후, 소스와 드레인 영역의 실리사이드 형성은 N2 분위기에서 $450^{\circ}C$, $500^{\circ}C$, $550^{\circ}C$에서 열처리를 통하여 형성하였다. 게이트 절연막은 스퍼터링을 이용하여 SiO2를 약 15 nm 의 두께로 증착하였다. 게이트 전극의 형성을 위하여 E-beam evaporator 을 이용하여 약 150 nm 두께의 알루미늄을 증착하고 노광공정을 통하여 게이트 영역을 형성 후 에 $450^{\circ}C$, H2/N2 분위기에서 약 30분 동안 forming gas annealing (FGA)을 실시하였다. 제작된 소자는 실리사이드 형성 온도에 따라서 각각 다른 특성을 보였으며 $450^{\circ}C$에서 실리사이드를 형성시킨 소자는 on currnet와 SS (Subthreshold Swing)이 가장 낮은것을 확인하였다. $500^{\circ}C$$550^{\circ}C$에서 실리사이드를 형성시킨 소자는 거의 동일한 on current와 SS값을 나타냈다. 이로써 glass 기판위의 SB-TFT 제작 시 실리사이드 형성의 최적온도는 $500^{\circ}C$로 생각되어 진다. 위의 결과를 토대로 본 연구에서는 SPC 결정화 방법을 이용하여 SB-TFT를 성공적으로 제작 및 평가하였고, 차세대 디스플레이에 적용할 경우 우수한 특성이 기대된다.

  • PDF