DOI QR코드

DOI QR Code

Differences on Growth, Photosynthesis and Pigment Contents of Open-pollinated Pinus densiflora Families Under Elevated Temperature and Drought

온도 증가와 건조 스트레스에 따른 소나무 풍매차대묘의 가계간 생장, 광합성 및 광색소 함량 차이

  • Kim, Gil Nam (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Han, Sim-Hee (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Park, Gwan Soo (Department of Environment and Forest Resources, Chungnam National University)
  • 김길남 (국립산림과학원 산림유전자원부) ;
  • 한심희 (국립산림과학원 산림유전자원부) ;
  • 박관수 (충남대학교 산림자원학과)
  • Received : 2014.07.29
  • Accepted : 2014.08.19
  • Published : 2014.12.30

Abstract

The impacts of high temperature and drought were studied on the seedlings of three families (superiorgangwon74, intermediate-gangwon77 and inferior-gangwon132) of P. densiflora which had been selected by the based on the growth indexes of 32-year-old. The seedlings were grown in controlled-environment growth chambers with combinations of four temperatures ($-3^{\circ}C$, $0^{\circ}C$, $+3^{\circ}C$ $+6^{\circ}C$; based on the monthly average for 30 years in Korea) and two water conditions (control, drought). The growth performance, photosynthetic parameters and photosynthetic pigment contents were measured at every 30 days under four temperatures and drought condition, and the end of each treatment. The superior family showed higher relative diameter at root collar growth rate and the dry weight than intermediate and inferior family in all treatments. Under elevated temperature and drought condition, growth rate was decreased, and seedlings showed lower growth rate than that of control in three families under low temperature. Photosynthetic rate, stomatal conductance and transpiration rate of three families decreased with the increase of temperature and drought condition, and that of seedlings under low temperature was lower than control. But under elevated temperature and drought condition, water use efficiency increased in three families. Photosynthetic pigment contents of leaves decreased under the increase of temperature and drought condition, but chlorophyll a/b ratio increased with the increase of temperature and drought condition in three families. The superior family showed higher total chlorophyll content than intermediate and inferior family in all treatments. In conclusion, P. densiflora is under changed temperature and drought condition, growth was decreased, seedlings more affected in elevated temperature than that of decreased temperature. The increase in monthly average temperature in Korea of more than $6^{\circ}C$, P. densiflora seedling growth in depending on region may decrease. In this study, the superior family(gangwon74) showed more excellent growth and physiological responses than intermediate (gangwon77) and inferior(gangwon132) family under changes temperature and drought.

본 연구는 국내 주요 경제수종인 소나무 풍매차대묘의 가계간 온도 증가와 건조 스트레스에 따른 생장 및 생리 반응 변화를 알아보고자 실시하였다. 온도변화 및 건조 처리에 따른 소나무의 근원경 상대생장율은 대조구와 건조 처리구 모두 온도 변화와 상관없이 강원74가 가장 우수하였다. 3가계 모두 온도 증가와 건조 처리구에서 근원경 생장은 감소하였으며, 저온처리구인 $-3^{\circ}C$ 처리구에서도 $0^{\circ}C$ 처리구보다 낮은 생장율을 보였다. 광합성 속도, 기공전도도 및 증산속도는 3가계 모두 건조 처리구와 온도가 증가할수록 감소하였고, 저온 처리구인 $-3^{\circ}C$ 처리구에서도 $0^{\circ}C$ 처리구보다 낮은 값을 보였다. 그러나 수분 이용효율은 온도 증가와 건조 처리구에서 높았다. 광색소 함량은 온도 증가와 건조 처리구에서 3가계 모두 감소하였지만, 엽록소 a와 b의 비는 건조 처리와 온도가 증가할수록 증가하였다. 총 엽록소 함량은 대조구와 건조 처리구 모두 온도변화와 상관없이 강원74가 가장 높았다. 결론적으로, 온도 증가 및 감소는 소나무의 생리적 반응에 부정적인 영향과 함께 생장을 저하시켰다. 또한, 건조 스트레스도 소나무의 생장 및 생리적 반응에 많은 영향을 미쳐, 생장이 저하되는 것을 알 수 있었다. 특히, 소나무는 온도 감소보다 온도 증가에 더 많은 영향을 받는 것으로 나타났으며, 향후 우리나라의 평균 온도가 $6^{\circ}C$ 이상 증가하게 되면 지역에 따라서 소나무 유묘의 생장이 매우 불량해 질 수도 있을 것으로 생각된다. 본 연구에서는 온도변화 및 건조 스트레스에 의한 생장 및 생리적 반응에 있어 가계간 차이를 확인 할 수 있었는데, 유묘의 초기생장이 가장 우수한 강원74가 다른 두 가계보다 온도 및 건조 스트레스 하에서도 생장 및 생리반응이 가장 우수하였다.

Keywords

References

  1. An, D. H., Y. T. Kim, D. J. Kim, and J. S. Lee, 2008: The effects of water stress on $C_3$ plant and CAM plant. Korean Society of Environmental Biology 26, 271-278.
  2. Barber, V. A., G. P. Juday, and B. P. Finney, 2000: Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405, 668-673. https://doi.org/10.1038/35015049
  3. Beadle, C. L., 1993: Growth analysis. In D.O. Hall, J.M.O. Scurlock. H.R. Bolhar-Nordenkampf, R.C. Leegood and S.P. Long(eds.). Photosynthesis and production in a changing environment a filed and laboratory manual. Chapman Hall, London, pp. 36-46.
  4. Bengough, A. G., M. F. Bransby, J. Hans, S. J. Mckenna, T. J. Roberts, and T. A. Valentine, 2006: Root responses to soil physical conditions; growth dynamics from field to cell. Journal of Experimental Botany 57, 437-447. https://doi.org/10.1093/jxb/erj003
  5. Chaves, M. M. and M. M. Oliveira, 2004: Mechanisms underlying plant resilience to water deficits: prospects of water-saving agriculture. Journal of Experimental Botany 55, 2365-2384. https://doi.org/10.1093/jxb/erh269
  6. Cornic, G., 2000: Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis. Trends in Plant Science 5, 1360-1385.
  7. Crookshanks, M., G. Taylor, and M. Broadmeadow, 1998: Elevated $CO_2$ and tree root growth: contrasting responses in Fraxinus excelsior, Quercus petraea and Pinus sylvestris. New Phytologist 138, 241-250. https://doi.org/10.1046/j.1469-8137.1998.00109.x
  8. Danby, R. and D. Hik, 2007: Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine treeline. Global Change Biology 13, 437-451. https://doi.org/10.1111/j.1365-2486.2006.01302.x
  9. Duncan, D. R. and J. M. Widholm, 1987: Proline accumulation and its implication in cold tolerance of regenerable maize callus. Plant Physiology 83, 703-708. https://doi.org/10.1104/pp.83.3.703
  10. Gimenez, C., V. J. Mitchell, and D. W. Lawlor, 1992: Regulation of photosynthetic rate of two sunflower hybrids under water stress. Plant Physiology 98, 516-524. https://doi.org/10.1104/pp.98.2.516
  11. Gunderson, C. A., K. H. O'hara, C. M. Campion, A. V. Walker, and N. T. Edwards, 2010: Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate. Global Change Biology 16, 2272-2286.
  12. Han, C., Q. Liu, and Y. Y, 2009: Short-term effects of experimental warming and enhanced ultraviolet-B radiation on photosynthesis and antioxidant defense of Pices asperata seedlings. Plant Growth Regulation 58, 153-162. https://doi.org/10.1007/s10725-009-9363-2
  13. He, W. M. and M. Dong, 2003: Plasticity in physiology and growth of Salix matsudana in response to simulated atmospheric temperature rise in the Mu Us Sandland. Photosynthetica 41, 297-300. https://doi.org/10.1023/B:PHOT.0000011966.30235.91
  14. Hiscox, J. D. and G. F. Israelstam, 1979: A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57, 1322-1334.
  15. Iglesias, D. J., A. Calatayud, E. barreno, E. P. Millo, and M. Talon, 2006: Responses of citrus plants to ozone: leaf biochemistry, antioxidant mechanism and lipid peroxidation. Plant Physiology and Biochemistry 44, 125-131. https://doi.org/10.1016/j.plaphy.2006.03.007
  16. Kanemoto, K., Y. Yamashita, T. Ozawa, N. Imanishi, N. T. Nguyen, R. Suwa, P. K. Mohapatra, S. Kanai, R. E. Moghaieb, J. Ito, H. E. Shemy, and K. Fujita, 2009: Photosynthetic acclimation to elevated $CO_2$ is dependent on N partitioning and transpiration in soybean. Plant Science 177, 398-403. https://doi.org/10.1016/j.plantsci.2009.06.017
  17. Kilpelainen, A., H. Peltola, A. Ryyppo, K. Sauvala, K. Laitinen, and S. Kellomaki, 2003: Wood properties of scots pines (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration. Tree Physiology 23, 889-897. https://doi.org/10.1093/treephys/23.13.889
  18. Kim, H. R. and Y. H. You, 2010: Effects of elevated $CO_2$ concentration and increased temperature on leaf relatedphysiological responses of Phytolacca insularis (native species) and Phytolacca Americana (invasive species). Journal of Ecology and Field Biology 33, 195-204. https://doi.org/10.5141/JEFB.2010.33.3.195
  19. Koch, G. W., S. C. Sillet, G. M. Jennings, and S. D. Davis, 2004: The limits to tree height. Nature 428, 851-854. https://doi.org/10.1038/nature02417
  20. Korea Forest Service, 2010: Statistical Year book of Forestry.
  21. Kratsch, H. A. and R. R. Wise, 2000: The ultrastructure of chilling stress. Plant, Cell and Environment 23, 337-350. https://doi.org/10.1046/j.1365-3040.2000.00560.x
  22. Kusaka, M., M. Ohta, and T. Fujimura, 2005: Contribution of inorganic components to osmotic adjustment and leaf folding for drought tolerance in pearl millet. Physiologia Plantarum 125, 474-489. https://doi.org/10.1111/j.1399-3054.2005.00578.x
  23. Lawlor, D. W. and G. Cornic, 2002: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment 25, 275-294. https://doi.org/10.1046/j.0016-8025.2001.00814.x
  24. Lawlor, D. W., 2002: Limitation to photosynthesis in waterstressed leaves: stomata vs. metabolism and the role of ATP. Annals of Botany 89, 871-885. https://doi.org/10.1093/aob/mcf110
  25. Lawson, T., K. Oxborough, J. I. L. Morison, and N. R. Baker, 2003: The responses of guard and mesophyll cell photosynthesis to $CO_2$, $O_2$, light, and water stress in a range of species are similar. Journal of Experimental Botany 54, 1743-1752. https://doi.org/10.1093/jxb/erg186
  26. Leakey, A. D. B., E. A. Ainsworth, C. J. Bernacchi, A. Rogers, S. P. Long, and D. R. Ort, 2009: Elevated $CO_2$ effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany 60, 2859-2876. https://doi.org/10.1093/jxb/erp096
  27. Lee, C. S., J. H. Kim, H. Yi, and Y. H. You, 2004: Seedling establishment and regeneration of Korean red pine(Pinus densiflora S. et Z.) forests in Korea in relation to soil moisture. Forest Ecology and Management 199, 423-432. https://doi.org/10.1016/j.foreco.2004.05.053
  28. Lee, K. J., H. Y. Won, and H. T. Mun, 2012: Contribution of root respiration to soil respiration for Quercus acutissima forest. Korean Journal of Environmental Ecology 26, 780-786.
  29. Lee, W. Y., E. J. Park, B. H. Cheon, and S. U. Han, 2011: Relationships of growth characteristics between adult trees and their seedlings in open-pollinated Pinus densiflora families. The Korean Society of Breeding Science 43, 262-268.
  30. Lim, C. S., 2010: Selection of cultivars and organic solvents to improve fruit set of greenhouse watermelon during cold period. Journal of Bio-Environment Control 19, 147-152.
  31. Loveys, B. R., I. Scheurwater, T. L. Pons, A. H. Fitter, and O. K. Atkin, 2002: Growth temperature influences the underlying components of relative growth rate: an investigation using inherently fast-and slow-growing plant species. Plant, Cell and Environment 25, 975-987. https://doi.org/10.1046/j.1365-3040.2002.00879.x
  32. Matthias, A., K. Thomas, S. G. G. Madeleine, and D. Matthias, 2011: Provenance-specific growth responses to drought and air warming in three European oak species (Quercus robur, Q. petraea and Q. pubescens). Tree Physiology 31, 287-297. https://doi.org/10.1093/treephys/tpr004
  33. Oh, C. Y., 2010: Physiological responses of superior and inferior families from open-pollinated progeny tests of Pinus densiflora to drought stress. Ph. D. Dissertation. Seoul National University.
  34. Onoda, Y., T. Hirose, and K. Hikosaka, 2009: Does leaf photosynthesis adapt to $CO_2$-enriched environments? An experiment on plants originating from three natural $CO_2$ springs. New Phytologist 182, 698-709. https://doi.org/10.1111/j.1469-8137.2009.02786.x
  35. Pallardy, S. G. and J. L. Rhoads, 1993: Morphological adaptations to drought in seedlings of deciduous angiosperms. Canadian Journal of Forest Research 23, 1766-1774. https://doi.org/10.1139/x93-223
  36. Parry, M. A. J., P. J. Andralojc, S. Khan, P. J. Lea, and A. J. Keys, 2002: Rubisco activity: effect of drought stress. Annals of Botany 89, 833-839. https://doi.org/10.1093/aob/mcf103
  37. Reyes, E. and P. H. Jennings, 1994: Response of cucumber (Cucumis sativus L.) and squash (Cucurbita pepo L. var. melopepo) roots to chilling stress during early stages of seedling development. Journal of the American Society for Horticultural Science 119, 964-970.
  38. Richard, J. N., M. L. Tammy, S. H. R. Jennifer, and G. O. N. Elizabeth, 2000: Nitrogen resorption in senescing tree leaves in a warmer; CO2-enriched atmosphere. Plant and Soil 224, 15-29. https://doi.org/10.1023/A:1004629231766
  39. Richards, R. A. and A. G. Condon, 1993: Challenges ahead in using carbon isotope discrimination in plant-breeding programs. Academic Press, Inc. pp. 451-462.
  40. Rustad, L. E., J. L. Campbell, G. M. Marion, R. J. Norby, M. J. Mitchell, A. E. Hartley, J. H. C. Cornelissen, and J. Gurevitch, 2001: A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126, 543-562. https://doi.org/10.1007/s004420000544
  41. Ryan, M. G. and B. E. Law, 2005: Interpreting, measuring, and modeling soil respiration. Biogeochemistry 73, 3-27. https://doi.org/10.1007/s10533-004-5167-7
  42. Shao, H. B., L. Y. Chu, M. A. Shao, A. J. Cheruth, and H. M. Mi, 2008: Higher plant antioxidants and redox signaling under environmental stresses. Comptes Rendus Biologies 331, 433-441. https://doi.org/10.1016/j.crvi.2008.03.011
  43. Volder, A., E. J. Edwards, J. R. Evans, B. C. Robertson, M. Schortemeyer, and R. M. Gifford, 2004: Does greater night-time, rather than constant, warming alter growth of managed pasture under ambient and elevated atmospheric $CO_2$? New Phytologist 162, 397-411. https://doi.org/10.1111/j.1469-8137.2004.01025.x
  44. Wan, S., R. J. Norby, K. S. Pregitzer, J. Ledford, and E. G. O'Neill, 2004: CO2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytologist 29, 1469-8137.
  45. Way, D. A. and R. Oren, 2010: Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiology 30, 669-688. https://doi.org/10.1093/treephys/tpq015
  46. Wu, Z., P. Dijkstra, G. W. Koch, J. Penuelas, and B. A. Hungate, 2011: Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biology 17, 927-942. https://doi.org/10.1111/j.1365-2486.2010.02302.x
  47. Xu, Z., T. Hu, and Y. Zhang, 2012: Effects of experimental warming on phenology, growth and gas exchange of treeline birch (Betula utilis) saplings, Eastern Tibetan Plateau, China. European Journal of Forest Research 13, 811-819.
  48. Yin, H. J., Q. Liu, and T. Lai, 2008: Warming effects on growth and physiology in the seedlings of the two conifers Picea asperata and Abies faxoniana under two contrasting light conditions. Ecological Research 23, 459-469. https://doi.org/10.1007/s11284-007-0404-x
  49. Zang, U., M. Goisser, K. H. Häberle, R. Matyssek, E. Matzner, and W. Borken, 2014: Effects of drought stress on photosynthesis, rhizosphere respiration, and fine-root characteristics of beech saplings: A rhizotron field study. Journal of Plant Nutrition and Soil Science 177, 168-177. https://doi.org/10.1002/jpln.201300196
  50. Zhang, J. and W. J. Davies, 1990: Changes in the concentration of ABA in xylem sap as a function of changing soil water status can account for changes in leaf conductance and growth. Plant, Cell and Environment 13, 277-285. https://doi.org/10.1111/j.1365-3040.1990.tb01312.x
  51. Zhao, C. and Q. Liu, 2009: Growth and photosynthetic responses of two coniferous species to experimental warming and nitrogen fertilization. Canadian Journal of Forest Research 39, 1-11. https://doi.org/10.1139/X08-152

Cited by

  1. Effects of Water Stress on Carotenoid and Proline Contents in Kale (Brassica oleracea var. acephala) leaves vol.36, pp.2, 2017, https://doi.org/10.5338/KJEA.2017.36.2.16