• Title/Summary/Keyword: 저온활성 촉매

Search Result 117, Processing Time 0.024 seconds

Ammonia Conversion in the Presence of Precious Metal Catalysts (귀금속촉매하에서 암모니아의 전환반응)

  • Jang, Hyun Tae;Park, YoonKook;Ko, Yong Sig
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.806-812
    • /
    • 2008
  • The ammonia decomposition reaction has been of increasing interest as a means of treating ammonia in flue gas in the presence of precious metal catalyst. Various catalysts, $Pt-Rh/Al_2O_3$, $Pt-Rh/TiO_2$, $Pt-Rh/ZrO_2$, $Pt-Pd/Al_2O_3$, $Pd-Rh/Al_2O_3$, $Pd-Rh/TiO_2$, $Pd-Rh/ZrO_2$, $Pt-Pd-Rh/Al_2O_3$, $Pd/Ga-Al_2O_3$, $Rh/Ga-Al_2O_3$, and Ru/Ga-$Al_2O_3$, were synthesized by using excess wet impregnation method. Using a homemade 1/4" reactor at $10,000{\sim}50,000hr^{-1}$ of space velocity in the presence of precious metal catalyst ammonia decomposition reactions were carried out to investigate the catalyst activity. The inlet ammonia concentration was maintained at 2,000 ppm, with an air balance. Both $T_{50}$ and $T_{90}$, defined as the temperatures where 50% and 90% of ammonia, respectively, are converted, decreased significantly when alumina-supported catalysts were applied. In terms of catalytic performance on the ammonia conversion in the presence of hydrogen sulfide, $Pt-Rh/Al_2O_3$ catalyst showed no effect on the poisoning caused by hydrogen sulfide. These results indicate that platinum-rhodium bimetallic catalyst is a useful catalyst for ammonia decomposition.

Kinetics of the Oxidation of Carbon Monoxide on NiO at Low Temperature (저온 일산화탄소의 산화반응속도론적 연구)

  • Choi, Jae-Shi;Kim, Keu-Hong
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.117-125
    • /
    • 1974
  • The catalytic reaction between carbon monoxide and oxygen was investigated in the presence of catalysts which were specially treated by applying an annealing method at different monoxide and oxygen and at reaction temperatures in the region of partial pressures of carbon $40^{\circ}C$ to $95^{\circ}C$. The oxidation rate is highest on NiO annealed at low temperature in vacuum. The data has been correlated with the first order kinetics, and the activation energies from the Arrhenius equation are found to be 4Kcal/mole in the region of the experimental temperatures. The excess oxygen in NiO obtained from the decomposition of $NiCO_3$does not cause activation at $95^{\circ}C$. But NiO catalysts annealed again in vacuum display activation even at $40^{\circ}C$. The quantity of the excess oxygen in NiO surfaces seems to be the controlling factor in determining the rates of oxidation of carbon monoxide.

  • PDF

Reaction Mechanism of Low Temperature NH3 SCR over MnOx/Sewage Sludge Char (MnOx/Sewage Sludge Char를 이용한 저온 NH3 SCR의 반응 메커니즘)

  • Cha, Jin-Sun;Park, Young-Kwon;Park, Sung Hoon;Jeon, Jong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.308-311
    • /
    • 2011
  • The reaction mechanism of selective catalytic reduction of NOx over sewage sludge char impregnated with MnOx using $NH_3$ as the reducing agent was investigated. The active Mn phase was shown to be $Mn_3O_4$ from the XRD analysis. Adsorption was the dominant NOx removal mechanism at low temperatures below $150^{\circ}C$ although reduction reaction also contributed partly to the NOx removal at $100{\sim}150^{\circ}C$. The reaction rate constants of NOx removal over non-impregnated and MnOx-impregnated active chars were compared based on experimental results. The MnOx-impregnated char was shown to have a higher reaction rate constant and a higher NOx removal efficiency due to a higher collision coefficient and a lower activation energy. The activation energy for both chars was shown to be relatively low (10~12 kJ/mol) under the experimental conditions of this study.

Preperation of catalyst having high activity on oxygen reduction (저온형 연료전지용 산소의 고활성 환원 촉매 제조)

  • 김영우;김형진;이주성
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1992.11a
    • /
    • pp.39-40
    • /
    • 1992
  • This paper dealt with the manufacturing of binary alloy catalyst and showed simple electrochemical method for determing catalytic activity of oxygen reduction in acid or alkaline electrolyte. The catalyst was prepared by impregnating transition metal salts on platinum or silver particles adsorbed before on carbon paper substrate. The electrochemical characteristics of the catalysts was investigated with carbon paper electrode or PTFE-boned porous electrode and then cathodic current densities and tafel slopes were compared. As a result, of all binary catalysts utilized in this work, Pt-Fe, Pt-Mo showed better oxygen reduction activity than pure platinum catalyst in acid electrolyte and Ag-Fe, Ag-Pt, and Ag-Ni-Bi-Ti catalyst did than pure silver catalyst in alkaline electrolyte. The current density of Pt-Fe electrode in acid electrolyte was one and half times higher than that of Pt electrode(~500mA/$\textrm{cm}^2$ at 0.7VvsNHE).

  • PDF

Enantioselective Kinetic Resolution of Racemic Styrene Oxide using Recombinant Marine Fish Epoxide Hydrolase of Mugil cephalus (해양 어류 Mugil cephalus 유래의 에폭사이드 가수분해효소를 이용한 라세믹 styrene oxide의 입체선택적 분할 반응)

  • Choi, Sung Hee;Kim, Hee Sook;Lee, Eun Yeol
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.491-496
    • /
    • 2008
  • The microsomal epoxide hydrolase gene (referred to as mMCEH) of Mugil cephalus was cloned by PCR, and then inserted to pColdI and pET-21b(+) vector, respectively. The recombinant E. coli possessing the recombinant plasmids exhibited the enantioperference toward (R)-styrene oxide. When enantioselective kinetic resolutions were conducted with 20 mM racemic styrene oxide, enantiopure (S)-styrene oxide was obtained with high enantiopurity more than 99% enantiomeric excess (ee) and 24.50% yield by using the recombinant E. coli harboring pET-21b(+)/mMCEH.

Adsorption Characteristics of Nitrogen Monoxide on Y-type and ZSM-5 Zeolites Exchanged with Alkali/Alkaline-earth Metal Cation (알칼리/알칼리토금속 양이온을 치환한 Y형 및 ZSM-5 제올라이트의 NO 흡착 특성)

  • Kim, Cheol Hyun;Lee, Chang Seop
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.857-864
    • /
    • 2005
  • Dealuminated and alkali/alkaline-earth metal exchanged Y-type and ZSM-5 zeolites were prepared as catalytic materials. Comparing with the composition of starting material, the magnitude of Si/Al ratio was increased after dealumination and cation exchange process. The ratio of Si/Al on surface was appeared to be larger than that in bulk. The destruction of basic frame in catalysts observed was understood to be due to a detachment of aluminum, which results in reducing framework while increasing non-framework. This phenomenon becomes more serious with increasing time of steam treatment and even more significant for the cation exchanged catalysts. The desorption peaks of the NO-TPD profiles taken after dealumination and cation exchanged Y-type and ZSM-5 zeolites shifted to the low temperature region. It was also found that the longer the steam treatment time, the degree of shift toward low temperature region was increased. The catalytic activities are dependent on the nature of cation exchanged, the ratio of Si/Al and the ratio of framework/non-framework by a change in basic frame.

Synthesis of TiO2/active carbon composites via hydrothermal process and their photocatalytic performance (수열합성법에 의한 TiO2/active carbon 복합체의 제조 및 광촉매특성)

  • Kim, Dong Jin;Lee, Jin Hee;Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.5
    • /
    • pp.241-245
    • /
    • 2013
  • Granular bamboo-derived active carbons (AC) were impregnated (or coated) with $TiO_2$ nano crystalline powders. The photocatalytic activity of the $TiO_2$-impregnated active carbons ($TiO_2$/AC) were determined on the basis of the degradation rate of methylene-blue aqueous solution under UV irradiation. The active compounds of $TiO_2$ were impregnated onto the AC under moderate hydrothermal conditions (${\leq}200^{\circ}C$, pH 11). The mean size of $TiO_2$ particles calculated from BET surface area were found to be as 50 nm. The $TiO_2$ precipitates were coated on the cavities or pores on the surfaces of highly activated carbons. Since the hydrothermal process led to a lowering of the on-set temperature of the anatase-to-rutile transition of $TiO_2$ as low as $200^{\circ}C$, $TiO_2$ crystallites of a pure anatase or a mixed form with rutile were successfully coated on the AC depending on the synthesis temperatures.

Characterization of a Psychrophilic Metagenome Esterase EM2L8 and Production of a Chiral Intermediate for Hyperlipemia Drug (메타게놈유래의 저온성 에스터라제 EM2L8의 효소적 특성과 이를 활용한 고지혈증 치료제 키랄소재의 생산)

  • Jung, Ji-Hye;Choi, Yun-Hee;Lee, Jung-Hyun;Kim, Hyung-Kwoun
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.2
    • /
    • pp.118-124
    • /
    • 2009
  • Esterase EM2L8 gene isolated from deep sea sediment was expressed in Escherichia coli BL21 (DE3) and the esterase activity of the cell-free extract was assayed using p-nitrophenyl butyrate-spectrophotometric method. Its optimum temperature was $40-45^{\circ}C$ and 45% activity of the maximum activity was retained at $15^{\circ}C$. The activation energy at $15-45^{\circ}C$ was calculated to be 4.9 kcal/mol showing that esterase EM2L8 was a typical cold-adapted enzyme. Enzyme activity was maintained for 6 h and 4 weeks at $30^{\circ}C$ and $4^{\circ}C$, respectively. When each ethanol, methanol, and acetone was added to the reaction mixture to 15% concentration, enzyme activity was maintained. In the case of DMSO, enzyme activity was kept up to 40% concentration. (S)-4-Chloro-3-hydroxy butyric acid is a chiral intermediate for the synthesis of Atorvastatin, a hyperlipemia drug. When esterase EM2L8 (40 U) was added to buffer solution (1.2 mL, pH 9.0) containing ethyl-(R,S)-4-chloro-3-hydroxybutyrate (38 mM), it was hydrolyzed into 4-chloro-3-hydroxy butyric acid with a rate of $6.8\;{\mu}mole/h$. The enzyme hydrolyzed (S)-substrate more rapidly than (R)-substrate. When conversion yield was 80%, e.e.s value was 40%. When DMSO was added, hydrolysis rate increased to $10.4\;{\mu}mole/h$. The plots of conversion yield vs e.e.s in the presence or absence of DMSO were almost same, implying that the reaction enantioselectivity was not changed by the addition of DMSO. Taken together, esterase EM2L8 had high activity and stability at low temperatures as well as in various organic solvents/aqueous solutions. These properties suggested that it could be used as a biocatalyst in the synthesis of useful pharmaceuticals.

Effects of SiO2 Incorporation on Catalytic Performance and Physico-Chemical Properties of Iron-Based Catalysts for the Fischer-Tropsch Synthesis (Fischer-Tropsch 합성반응용 Fe계 촉매의 성능 및 물리화학적 특성에 미치는 SiO2 첨가효과)

  • Hyun, Sun-Taek;Chun, Dong Hyun;Kim, Hak-Joo;Yang, Jung Hoon;Yang, Jung-Il;Lee, Ho-Tae;Lee, Kwan-Young;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.304-310
    • /
    • 2010
  • The FTS(Fischer-Tropsch synthesis) was carried out over precipitated iron-based catalysts with or without $SiO_2$ in a fixed-bed reactor at $250^{\circ}C$ and 1.5 MPa. The catalysts with $SiO_2$ showed much higher catalytic activity for the FTS than those without $SiO_2$, displaying excellent stability during 144 h of reaction. The X-ray diffraction and $N_2$ physisorption revealed that the catalysts with $SiO_2$ showed enhanced dispersion of $Fe_2O_3$ compared with those without $SiO_2$. Also, the results of temperature-programmed reduction by $H_2$ showed that the addition of $SiO_2$ markedly promoted the reduction of $Fe_2O_3$ into $Fe_3O_4$ and FeO at low temperatures below $260^{\circ}C$. In contrast, surface basicity of the catalysts, which was analyzed by temperature-programmed desorption of $CO_2$, decreased as a result of $SiO_2$ addition. We attribute the high and stable performance of the catalysts with $SiO_2$ to the improved dispersion and reducibility by the $SiO_2$ addition.

Kinetic of Catalytic CO2 Gasification for Cyprus Coal by Gas-Solid Reaction Model (기-고체 반응모델을 이용한 Cyprus탄의 CO2 저온촉매가스화 반응거동)

  • Hwang, Soon Choel;Lee, Do Kyun;Kim, Sang Kyum;Lee, Si Hyun;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.653-662
    • /
    • 2015
  • In general, the coal gasification has to be operated under high temperature ($1300{\sim}1400^{\circ}C$) and pressure (30~40 bar). However, to keep this conditions, it needs unnecessary and excessive energy. In this work, to reduce the temperature of process, alkali catalysts such as $K_2CO_3$ and $Na_2CO_3$ were added into Cyprus coal. We investigated the kinetic of Cyprus char-$CO_2$ gasification. To determine the gasification conditions, the coal (with and without catalysts) gasified with fixed variables (catalyst loading, catalytic effects of $Na_2CO_3$ and $K_2CO_3$, temperatures) by using TGA. When catalysts are added by physical mixing method into Cyprus coal the reaction rate of coal added 7 wt% $Na_2CO_3$ is faster than raw coal for Cyprus char-$CO_2$ gasification. The activation energy of coal added 7 wt% $Na_2CO_3$ was calculated as 63 kJ/mol which was lower than raw char. It indicates that $Na_2CO_3$ can improve the reactivity of char-$CO_2$ gasification.