Ammonia Conversion in the Presence of Precious Metal Catalysts

귀금속촉매하에서 암모니아의 전환반응

  • Jang, Hyun Tae (Department of Chemical Engineering, Hanseo University) ;
  • Park, YoonKook (Department of Chemical System Engineering, Hongik University) ;
  • Ko, Yong Sig (Department of Advanced Material Chemistry, Shinsung University)
  • 장현태 (한서대학교 화학공학과) ;
  • 박윤국 (홍익대학교 화학시스템공학과) ;
  • 고용식 (신성대학교 신소재화학과)
  • Received : 2008.04.30
  • Accepted : 2008.05.31
  • Published : 2008.08.31

Abstract

The ammonia decomposition reaction has been of increasing interest as a means of treating ammonia in flue gas in the presence of precious metal catalyst. Various catalysts, $Pt-Rh/Al_2O_3$, $Pt-Rh/TiO_2$, $Pt-Rh/ZrO_2$, $Pt-Pd/Al_2O_3$, $Pd-Rh/Al_2O_3$, $Pd-Rh/TiO_2$, $Pd-Rh/ZrO_2$, $Pt-Pd-Rh/Al_2O_3$, $Pd/Ga-Al_2O_3$, $Rh/Ga-Al_2O_3$, and Ru/Ga-$Al_2O_3$, were synthesized by using excess wet impregnation method. Using a homemade 1/4" reactor at $10,000{\sim}50,000hr^{-1}$ of space velocity in the presence of precious metal catalyst ammonia decomposition reactions were carried out to investigate the catalyst activity. The inlet ammonia concentration was maintained at 2,000 ppm, with an air balance. Both $T_{50}$ and $T_{90}$, defined as the temperatures where 50% and 90% of ammonia, respectively, are converted, decreased significantly when alumina-supported catalysts were applied. In terms of catalytic performance on the ammonia conversion in the presence of hydrogen sulfide, $Pt-Rh/Al_2O_3$ catalyst showed no effect on the poisoning caused by hydrogen sulfide. These results indicate that platinum-rhodium bimetallic catalyst is a useful catalyst for ammonia decomposition.

귀금속촉매 존재하에서 암모니아 전환반응은 배가스내의 암모니아를 처리하는데 중요한 기술이다. 과잉용액 함침법을 이용하여 $Pt-Rh/Al_2O_3$, $Pt-Rh/TiO_2$, $Pt-Rh/ZrO_2$, $Pt-Pd/Al_2O_3$, $Pd-Rh/Al_2O_3$, $Pd-Rh/TiO_2$, $Pd-Rh/ZrO_2$, $Pt-Pd-Rh/Al_2O_3$, $Pd/Ga-Al_2O_3$, $Rh/Ga-Al_2O_3$, 그리고 $Ru/Ga-Al_2O_3$의 촉매를 제조하였다. 제조된 촉매는 1/4"의 반응기에 $10,000{\sim}50,000hr^{-1}$의 공간속도 조건하에서 촉매활성능 실험을 수행하였다. 암모니아의 초기농도는 2,000 ppm (나머지는 공기)으로 유지하였다. $T_{50}$는 암모니아 전환율이 50%일 때를 나타내는 온도를, $T_{90}$은 90%의 전환율일 때의 온도를 나타낸다. 알루미나를 담지체로 사용했을때의 $T_{50}$$T_{90}$은 다른 담체를 사용했을때의 $T_{50}$$T_{90}$보다 훨씬 낮았다. Pd-Rh촉매의 경우 $Al_2O_3$를 담체로 사용하였을 때 $ZrO_2$$TiO_2$보다 저온 활성이 우수하게 나타났다. 황산화물의 피독실험 결과 본 연구에서는 최종적으로 $Pt-Rh/Al_2O_3$ 촉매가 다른 촉매에 비하여 우수함을 보였다. 실험결과 Pt-Rh가 암모니아 전환공정에서 유용한 촉매라는 사실을 알 수 있다.

Keywords

Acknowledgement

Supported by : 이산화탄소 저감 및 처리 기술개발 사업단

References

  1. http://en.wikipedia.org/wiki/Kyoto_Protocol
  2. Jeon, M.-K. and Kang, M., "Effect of Pt Addition on Vanadiumincorporated $TiO_2$ Catalysts for Photodecomposition of Ammonia," Korea J. Chem. Eng., 24(5), 774-790(2007) https://doi.org/10.1007/s11814-007-0040-8
  3. Chmielarz, L., Kutrowski, P., Dziembaj, R., Cool P. and Vansant, E. F., "Selective Catalytic Reduction of NO with Ammonia over Porous Clay Heterostructures Modified with Copper and Iron Species," Catalysis Today, 119(1-4), 181-186(2007) https://doi.org/10.1016/j.cattod.2006.08.017
  4. Yokozekia, A. and Shiflett, M. B., "Vapor-Liquid Equilibria of Ammonia + Ionic Liquid Mixtures," Applied Energy, 84(12), 1258-1273(2007) https://doi.org/10.1016/j.apenergy.2007.02.005
  5. Jang, H. T., Park, Y., Ko, Y. S. and Cha, W.-S., "Selective Catalytic Oxidation of Ammonia in the Presence of Manganese Catalysts," Korea Chem. Eng. Res., 46(3), 498-505(2008)
  6. Kim, N. J., Hirai, M. and Shoda, M., "Comparison of Organic and Inorganic Packing Materials in the Removal of Ammonia Gas in Biofilters," J. Hazard. Mater., B72, 77-90(2000)
  7. Bosch, H. and Janssen, F., "Control Technologies," Catalysis Today, 2(4), 381-401(1988) https://doi.org/10.1016/0920-5861(88)80003-8
  8. Vajo, J. J., Tsai, W. and Weinberg, W. H., "Mechanistic Details of the Heterogeneous Decomposition of Ammonia on Platinum," J. Phys. Chem., 89(15), 3243-3251(1985) https://doi.org/10.1021/j100261a017
  9. Vavere1, A. and Hansen, R. S., "Decomposition of Ammonia on Rhodium Crystals," J. Cat., 69(1), 158-171(1981) https://doi.org/10.1016/0021-9517(81)90138-X
  10. Choudhary, T. V., Sivadinarayana, C. and Goodman, D. W., "Production of COx-free Hydrogen for Fuel Cells Via Step-wise Hydrocarbon Reforming and Catalytic Dehydrogenation of Ammonia," Chem. Eng. J., 93(1), 69-80(2003) https://doi.org/10.1016/S1385-8947(02)00110-9
  11. Papapolymerou, G. and Bontozoglou, V., "Decomposition of $NH_3$ on Pd and Ir Comparison with Pt and Rh," J. Mol. Cat. A., 120(1-3), 165-171(1997) https://doi.org/10.1016/S1381-1169(96)00428-1
  12. Rebrova, E. V., de Croona, M. H. J. M. and Schouten, J. C., "A Kinetic Study of Ammonia Oxidation on a Pt Catalyst in the Explosive Region in a Microstructured Reactor/Heat-Exchanger," Chem. Eng. Res. Des., 81(7), 744-752(2003) https://doi.org/10.1205/026387603322302913
  13. Ozawa, Y. and Tochiharaa, Y., "Catalytic Decomposition of Ammonia in Simulated Coal-derived Gas," Chem. Eng. Sci., 62(18-20), 5364-5367(2007) https://doi.org/10.1016/j.ces.2007.01.051
  14. Macgregor, S. A., "Theoretical Study of the Oxidative Addition of Ammonia to Various Unsaturated Low-Valent Transition Metal Species," Organometallics, 20(9), 1860-1874(2001) https://doi.org/10.1021/om010044w
  15. Hannevold, L., Nilsen, O., Kjekshus, A. and Helmer Fjellvg, H., "Reconstruction of Platinum-rhodium Catalysts During Oxidation of Ammonia," App. Cat. A., 284(1-2), 163-176(2005) https://doi.org/10.1016/j.apcata.2005.01.033
  16. Lyubovsky, M. R. and Barelko, V. V., "Formation of Metal Wool Structures and Dynamics of Catalytic Etching of Platinum Surfaces During Ammonia Oxidation," J. Cat., 149(1), 23-35(1994) https://doi.org/10.1006/jcat.1994.1269
  17. Handforth, S. L. and Tilley, J. N., "Catalysts for Oxidation of Ammonia to Oxides of Nitrogen," Ind. Eng. Chem., 26(12), 1287-1292(1934) https://doi.org/10.1021/ie50300a016
  18. Okazaki, S., Kumasaka, M., Yoshida, J. and Kosaka, K., "Effect of ion on the Catalytic Activiey of -$MoO_{X}TiO_{2}$ for the Reduction of NO with $NH_3$," Ind. Eng. Chem. Prod. Res. Dev., 20(2) 301-301(1981) https://doi.org/10.1021/i300002a013