Browse > Article
http://dx.doi.org/10.14478/ace.2011.22.3.308

Reaction Mechanism of Low Temperature NH3 SCR over MnOx/Sewage Sludge Char  

Cha, Jin-Sun (School of Environmental Engineering, University of Seoul)
Park, Young-Kwon (School of Environmental Engineering, University of Seoul)
Park, Sung Hoon (Department of Environmental Engineering, Sunchon National University)
Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University)
Publication Information
Applied Chemistry for Engineering / v.22, no.3, 2011 , pp. 308-311 More about this Journal
Abstract
The reaction mechanism of selective catalytic reduction of NOx over sewage sludge char impregnated with MnOx using $NH_3$ as the reducing agent was investigated. The active Mn phase was shown to be $Mn_3O_4$ from the XRD analysis. Adsorption was the dominant NOx removal mechanism at low temperatures below $150^{\circ}C$ although reduction reaction also contributed partly to the NOx removal at $100{\sim}150^{\circ}C$. The reaction rate constants of NOx removal over non-impregnated and MnOx-impregnated active chars were compared based on experimental results. The MnOx-impregnated char was shown to have a higher reaction rate constant and a higher NOx removal efficiency due to a higher collision coefficient and a lower activation energy. The activation energy for both chars was shown to be relatively low (10~12 kJ/mol) under the experimental conditions of this study.
Keywords
NOx; sewage sludge char; reaction mechanism; Mn;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 E. Garcia-Bordeje, L. Calvillo, M. J. Lazaro, and R. Moliner, Appl. Catal. B: Environ., 50, 235 (2004).   DOI   ScienceOn
2 A. Boyano, M. E. Galvez, M. J. Lazaro, and R. Moliner, Carbon, 44, 2399 (2006).   DOI   ScienceOn
3 M. Koebel and M. Elsener, Chem. Eng. Sci., 53, 657 (1998).   DOI   ScienceOn
4 G. Marban and A. B. Fuertes, Catal. Lett., 84, 13 (2002).   DOI   ScienceOn
5 F. Kapteijn, L. Singoredjo, N. J. J. Dekker, and J. A. Moulijn, Ind. Eng. Chem. Res., 32, 445 (1993).   DOI
6 J. C. Choi, C. H. Cho, K. E. Jeong, J. K. Jeon, J. H. Yim, and Y. K. Park, J. Kor. Ind. Eng. Chem., 19, 92 (2008).
7 F. Nakajima and I. Hamada, Catal. Today., 29, 109 (1996).   DOI   ScienceOn
8 P. A. Lowe and J. N. Armor, ACS Symp. Series., 552, 205 (1994).
9 O. Ioannidou and A. Zabaniotou, Renew. Sustain. Energy Rev., 11, 1966 (2007).   DOI   ScienceOn
10 G. Lopez, M. Olazar, M. Artetxe, M. Amutio, G. Elordi, and J. Bilbao, J. Anal. Appl. Pyrolysis, 85, 539 (2009).   DOI   ScienceOn
11 J. S. Cha, J. C. Choi, J. H. Ko, Y. K. Park, S. H. Park, K. E. Jeong, S. S. Kim, and J. K. Jeon, Chem. Eng. J., 156, 321 (2010).   DOI   ScienceOn
12 Y. B. Jo, J. S. Cha, J. H. Ko, M. C. Shin, S. H. Park, J. K. Jeon, S. S. Kim, and Y. K. Park, Korean J. Chem. Eng., 28, 106 (2011).   DOI   ScienceOn
13 G. Marban, T. V. Solis, and A. B. Fuertes, J. Catal., 226, 138 (2004).   DOI   ScienceOn
14 Z. Zhu, Z. Liu, S. Liu, and H. Niu, Fuel, 79, 651 (2000).   DOI   ScienceOn
15 J. Muniz, G. Marban, and A. B. Fuertes, Appl. Catal. B: Environ., 27, 27 (2000).   DOI   ScienceOn