DOI QR코드

DOI QR Code

Kinetic of Catalytic CO2 Gasification for Cyprus Coal by Gas-Solid Reaction Model

기-고체 반응모델을 이용한 Cyprus탄의 CO2 저온촉매가스화 반응거동

  • Hwang, Soon Choel (Graduate school of energy science and technology, Chungnam National University) ;
  • Lee, Do Kyun (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Kim, Sang Kyum (Graduate school of energy science and technology, Chungnam National University) ;
  • Lee, Si Hyun (Korea Institute of Energy Research) ;
  • Rhee, Young Woo (Graduate school of energy science and technology, Chungnam National University)
  • 황순철 (충남대학교 에너지과학기술대학원) ;
  • 이도균 (충남대학교 바이오응용화학과) ;
  • 김상겸 (충남대학교 에너지과학기술대학원) ;
  • 이시훈 (한국에너지기술연구원) ;
  • 이영우 (충남대학교 에너지과학기술대학원)
  • Received : 2014.12.16
  • Accepted : 2015.01.20
  • Published : 2015.10.01

Abstract

In general, the coal gasification has to be operated under high temperature ($1300{\sim}1400^{\circ}C$) and pressure (30~40 bar). However, to keep this conditions, it needs unnecessary and excessive energy. In this work, to reduce the temperature of process, alkali catalysts such as $K_2CO_3$ and $Na_2CO_3$ were added into Cyprus coal. We investigated the kinetic of Cyprus char-$CO_2$ gasification. To determine the gasification conditions, the coal (with and without catalysts) gasified with fixed variables (catalyst loading, catalytic effects of $Na_2CO_3$ and $K_2CO_3$, temperatures) by using TGA. When catalysts are added by physical mixing method into Cyprus coal the reaction rate of coal added 7 wt% $Na_2CO_3$ is faster than raw coal for Cyprus char-$CO_2$ gasification. The activation energy of coal added 7 wt% $Na_2CO_3$ was calculated as 63 kJ/mol which was lower than raw char. It indicates that $Na_2CO_3$ can improve the reactivity of char-$CO_2$ gasification.

일반적으로 가스화는 고온($1300{\sim}1400^{\circ}C$), 고압(30~40 bar)에서 공정이 가동되나 이를 유지하기 위해 과도한 에너지가 사용된다. 본 연구에서는 공정 온도를 줄이기 위해 알칼리 촉매 중 $K_2CO_3$$Na_2CO_3$을 저등급의 사이프러스(Cyprus) 탄에 첨가하였고, 이산화탄소 분위기에서 가스화시켰을 때 나타나는 반응특성을 연구하였다. 열중량분석기를 활용하여 촉매의 함량, 촉매의 종류, 온도를 변수로서 가스화 공정조건을 결정하였다. 고체상 물리적 혼합법으로 촉매를 도입 시, 7 wt%의 $Na_2CO_3$가 첨가된 시료가 원탄보다 높은 활성을 보였다. 탄소전환율 거동을 예측하기 위해 시료별로 반응모델을 적용해본 결과, volumetric reaction model(VRM)이 탄소전환율 거동을 가장 잘 묘사하였다. 7 wt%의 $Na_2CO_3$을 첨가한 사이프러스 탄의 활성화 에너지는 63 kJ/mol로 원탄보다 낮으며, 이는 이산화탄소 분위기에서 석탄가스화의 반응성을 향상시킨다는 것을 보여주었다.

Keywords

References

  1. "World Electricity Generation," IEA Energy Statistics(2012).
  2. Wu, Y., Wu, S. and Gao, J., "A Study on the Applicability of Kinetic Models for Shenfu Coal Char Gasification with $CO_2$ at Elevated Temperatures," Energies, 2(3), 545-555(2009). https://doi.org/10.3390/en20300545
  3. Hippo, E. and Walker Jr, P. L., "Reactivity of Heat-treated Coals in Carbon Dioxide at $900^{\circ}C$," Fuel, 54(4), 245-248(1975). https://doi.org/10.1016/0016-2361(75)90037-X
  4. Zou, J. H., Zhou, Z. J., Wang, F. C., Zhang, W., Dai, Z. H., Liu, H. F. and Yu, Z. H., "Modeling Reaction Kinetics of Petroleum Coke Gasification with $CO_2$," Chem Eng and Process: Process Intensification, 46(7), 630-636(2007). https://doi.org/10.1016/j.cep.2006.08.008
  5. Liu, H., Luo, C., Toyota, M., Uemiya, S. and Kojima, T., "Kinetics of $CO_2$/char Gasification at Elevated Temperatures. Part II: Clarification of Mechanism Through Modelling and Char Characterization," Fuel Process.Technol., 87(9), 769-774(2006). https://doi.org/10.1016/j.fuproc.2006.02.007
  6. Standish, N. and Tanjung, A. F. A., "Gasification of Single Wood Charcoal Particles in $CO_2$," Fuel, 67(5), 666-672(1988). https://doi.org/10.1016/0016-2361(88)90296-7
  7. Ahn, D. H., Gibbs, B. M., Ko, K. H. and Kim, J. J., "Gasification Kinetics of an Indonesian Sub-bituminous Coal-char with $CO_2$ at Elevated Pressure," Fuel, 80(11), 1651-1658(2001). https://doi.org/10.1016/S0016-2361(01)00024-2
  8. Kajitani, S., Suzuki, N., Ashizawa, M. and Hara, S., "$CO_2$ Gasification Rate Analysis of Coal Char in Entrained Flow Coal Gasifier," Fuel, 85(2), 163-169(2006). https://doi.org/10.1016/j.fuel.2005.07.024
  9. Yoshida, S., Matsunami, J., Hosokawa, Y., Yokota, O., Tamaura, Y. and Kitamura, M., "Coal/$CO_2$ Gasification System Using Molten Carbonate Salt for Solar/fossil Energy Hybridization," Energy Fuels, 13(5), 961-964(1999). https://doi.org/10.1021/ef980144n
  10. Zhang, Y., Ashizawa, M., Kajitani, S. and Miura, K., "Proposal of a Semi-empirical Kinetic Model to Reconcile with Gasification Reactivity Profiles of Biomass Chars," Fuel, 87(4-5), 475-481(2008). https://doi.org/10.1016/j.fuel.2007.04.026
  11. Ye, D., Agnew, J. B. and Zhang, D., "Gasification of a South Australian Low-rank Coal with Carbon Dioxide and Steam: Kinetics and Reactivity Studies," Fuel, 77(11), 1209-1219(1998). https://doi.org/10.1016/S0016-2361(98)00014-3
  12. Huang, Y., Yin, X., Wu, C., Wang, C., Xie, J., Zhou, Z., Ma, L. and Li, H., "Effects of Metal Catalysts on $CO_2$ Gasification Reactivity of Biomass Char," Biotechnol. Adv., 27(5), 568-572(2009). https://doi.org/10.1016/j.biotechadv.2009.04.013
  13. Brooks, J. D., Taylor, G. and Walker Jr, P. L., "Chemistry and Physics of Carbon," New York, 4, 243(1968).
  14. Liu, T., Fang, Y. and Wang, Y., "An Experimental Investigation Into the Gasification Reactivity of Chars Prepared at High Temperatures," Fuel, 87(4-5), 460-466(2008). https://doi.org/10.1016/j.fuel.2007.06.019
  15. Everson, R. C., Neomagus, H. W. J. P., Kaitano, R., Falcon, R. and du Cann, V. M., "Properties of High Ash Coal-char Particles Derived from Inertinite-rich Coal: II. Gasification Kinetics with Carbon Dioxide," Fuel, 87(15-16), 3403-3408(2008). https://doi.org/10.1016/j.fuel.2008.05.019
  16. de Souza-Santos, M., "Comprehensive Modelling and Simulation of Fluidized Bed Boilers and Gasifiers," Fuel, 68(12), 1507-1521(1989). https://doi.org/10.1016/0016-2361(89)90288-3
  17. Duman, G., Uddin, M. A. and Yanik, J., "The Effect of Char Properties on Gasification Reactivity," Fuel Process. Technol., 118(0), 75-81(2014). https://doi.org/10.1016/j.fuproc.2013.08.006
  18. Park, C. Y., Park, J. Y., Lee, S. H., Rhu, J. H., Han, M. H. and Rhee, Y. W., "Kinetic Studies of the Catalytic Low Rank Coal Gasification Under $CO_2$ Atmosphere," Korean Chem. Eng. Res., 50(6), 1086-1092(2012). https://doi.org/10.9713/kcer.2012.50.6.1086
  19. Park, J. Y., Lee, D. K., Hwang, S. C., Kim, S. K., Lee, S. H., Yoon, S. K., Yoo, J. H., Lee, S. H. and Rhee, Y. W., "Comparative Modeling of Low Temperature Char-$CO_2$ Gasification Reaction of Drayton Coal by Carbon Dioxide Concentration," Clean Technol., 19(3), 306-312(2013). https://doi.org/10.7464/ksct.2013.19.3.306
  20. Hwang, S. C., Kim, S. K., Park, J. Y., Lee, D. K., Lee, S. H. and Rhee, Y. W., "Kinetic Study on Low-rank Coal Including $K_2CO_3$, $Na_2CO_3$, $CaCO_3$ and Dolomite Gasification under $CO_2$ Atmosphere," Clean Technol., 20(1), 64-71 (2014). https://doi.org/10.7464/ksct.2014.20.1.064
  21. Aranda, A., Murillo, R., Garcia, T., Callen, M. S. and Mastral, A. M., "Steam Activation of Tyre Pyrolytic Carbon Black: Kinetic Study in a Thermobalance," Chem. Eng. J., 126 (2-3), 79-85(2007). https://doi.org/10.1016/j.cej.2006.08.031
  22. Murillo, R., Navarro, M. V., Lopez, J. M., Aylon, E., Callen, M. S., Garcia, T. and Mastral, A. M., "Kinetic Model Comparison for Waste Tire Char Reaction with $CO_2$," Ind. Eng. Chem. Res., 43(24), 7768-7773(2004). https://doi.org/10.1021/ie040026p
  23. Fermoso, J., Stevanov, C., Moghtaderi, B., Arias, B., Pevida, C., Plaza, M., Rubiera, F. and Pis, J., "High-pressure Gasification Reactivity of Biomass Chars Produced at Different Temperatures," J. Anal. Appl. Pyrolysis., 85(1), 287-293(2009). https://doi.org/10.1016/j.jaap.2008.09.017
  24. Wen, C., "Noncatalytic Heterogeneous Solid-fluid Reaction Models," Ind. Eng. Chem., 60(9), 34-54(1968). https://doi.org/10.1021/ie50705a007
  25. Ishida, M. and Wen, C., "Comparison of Kinetic and Diffusional Models for Solid-gas Reactions," AIChE J., 14(2), 311-317 (1968). https://doi.org/10.1002/aic.690140218
  26. Bhatia, S. and Perlmutter, D., "A Random Pore Model for Fluidsolid Reactions: I. Isothermal, Kinetic Control," AIChE J., 26(3), 379-386(1980). https://doi.org/10.1002/aic.690260308
  27. Fermoso, J., Arias, B., Pevida, C., Plaza, M. G., Rubiera, F. and Pis, J. J., "Kinetic Models Comparison for Steam Gasification of Different Nature Fuel Chars," J. Therm. Anal. Calorim., 91(3), 779-786(2008). https://doi.org/10.1007/s10973-007-8623-5
  28. Box, G. E., Hunter, J. S. and Hunter, W. G., "Statistics for Experimenters: Design, Innovation, and Discovery," 2nd ed. Wiley & Sons, New Jersey, NJ(2005).
  29. Strange, J. F. and Walker Jr, P. L., "Carbon-carbon Dioxide Reaction: Langmuir-Hinshelwood Kinetics at Intermediate Pressures," Carbon, 14(6), 345-350(1976). https://doi.org/10.1016/0008-6223(76)90008-7
  30. Irfan, M. F., Usman, M. R. and Kusakabe, K., "Coal Gasification in $CO_2$ Atmosphere and Its Kinetics Since 1948: A Brief Review," Energy, 36(1), 12-40(2011). https://doi.org/10.1016/j.energy.2010.10.034
  31. McKee, D. W., "Gasification of Graphite In Carbon Dioxide and Water Vapor-the Catalytic Effects of Alkali Metal Salts," Carbon, 20(1), 59-66(1982). https://doi.org/10.1016/0008-6223(82)90075-6
  32. Sams, D. A., Talverdian, T. and Shadman, F., "Kinetics of Catalyst Loss During Potassium-catalyzed $CO_2$ Gasification of Carbon," Fuel, 64(9), 1208-1214(1985). https://doi.org/10.1016/0016-2361(85)90176-0