Browse > Article

Characterization of a Psychrophilic Metagenome Esterase EM2L8 and Production of a Chiral Intermediate for Hyperlipemia Drug  

Jung, Ji-Hye (Division of Biotechnology, The Catholic University of Korea)
Choi, Yun-Hee (Division of Biotechnology, The Catholic University of Korea)
Lee, Jung-Hyun (Marine Biotechnology Research Centre, KORDI)
Kim, Hyung-Kwoun (Division of Biotechnology, The Catholic University of Korea)
Publication Information
Microbiology and Biotechnology Letters / v.37, no.2, 2009 , pp. 118-124 More about this Journal
Abstract
Esterase EM2L8 gene isolated from deep sea sediment was expressed in Escherichia coli BL21 (DE3) and the esterase activity of the cell-free extract was assayed using p-nitrophenyl butyrate-spectrophotometric method. Its optimum temperature was $40-45^{\circ}C$ and 45% activity of the maximum activity was retained at $15^{\circ}C$. The activation energy at $15-45^{\circ}C$ was calculated to be 4.9 kcal/mol showing that esterase EM2L8 was a typical cold-adapted enzyme. Enzyme activity was maintained for 6 h and 4 weeks at $30^{\circ}C$ and $4^{\circ}C$, respectively. When each ethanol, methanol, and acetone was added to the reaction mixture to 15% concentration, enzyme activity was maintained. In the case of DMSO, enzyme activity was kept up to 40% concentration. (S)-4-Chloro-3-hydroxy butyric acid is a chiral intermediate for the synthesis of Atorvastatin, a hyperlipemia drug. When esterase EM2L8 (40 U) was added to buffer solution (1.2 mL, pH 9.0) containing ethyl-(R,S)-4-chloro-3-hydroxybutyrate (38 mM), it was hydrolyzed into 4-chloro-3-hydroxy butyric acid with a rate of $6.8\;{\mu}mole/h$. The enzyme hydrolyzed (S)-substrate more rapidly than (R)-substrate. When conversion yield was 80%, e.e.s value was 40%. When DMSO was added, hydrolysis rate increased to $10.4\;{\mu}mole/h$. The plots of conversion yield vs e.e.s in the presence or absence of DMSO were almost same, implying that the reaction enantioselectivity was not changed by the addition of DMSO. Taken together, esterase EM2L8 had high activity and stability at low temperatures as well as in various organic solvents/aqueous solutions. These properties suggested that it could be used as a biocatalyst in the synthesis of useful pharmaceuticals.
Keywords
Esterase EM2L8; metagenome; cold-adapted enzyme; chiral drug; organic solvent;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Daniel, R. 2004. The soil metagenome-a rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol. 15: 199-204   DOI   PUBMED   ScienceOn
2 Joseph, B., P. W. Ramteke, and G. Thomas. 2008. Cold active microbial lipases: Some hot issues and recent developments. Biotechnol. adv. 26: 457-470   DOI   ScienceOn
3 Ferre, M., F. Martinez-Abarca, and P. N. Golyshin. 2005. Mining genomes and 'metagenomes' for novel catalysts. Curr. Opin. Biotechnol. 16: 588-593   DOI   ScienceOn
4 Park, H. J., J. H. Jeon, S. G. Kang, J. H. Lee, S. A. Lee, and H. K. Kim. 2007. Functional expression and refolding of new alkaline esterase, EM2L8 from deep-sea sediment metagenome. Protein Expr Purif. 52: 340-347   DOI   ScienceOn
5 Gupta, R., N. Gupta, and P. Rathi. 2004. Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64: 763-781   DOI   ScienceOn
6 Choi, Y. H., K. N. Uhm, and H. K. Kim. 2008. Biochemical characterization of Rhodococcus erythropolis N'4 nitrile hydratase acting on 4-chloro-3-hydroxybutyronitrile. J. Molecul. Catal. B: Enzym. 55: 157-163   DOI   ScienceOn
7 Kulakova, L., A. Galkin, T. Nakayama, T. Nishino, and N. Esaki. 2004. Cold-active esterase from Psychrobacter sp. Ant300: gene cloning, characterization, and the effects of GlyPro substitution near the active site on its catalytic activity and stability. Biochim. Biophys. Acta 1696: 59-65   DOI   PUBMED   ScienceOn
8 Jeon, J. H., J. T. Kim, Y. J. Kim, H. K. Kim, H. S. Lee, S. G. Kang, S. J. Kim, and J. H. Lee. 2009. Cloning and characterization of a new cold-active lipase from a deep-sea sediment metagenome. Appl. Microbiol. Biotechnol. 81: 865-874   DOI   ScienceOn
9 Russell, N. 2000. Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4: 83-90   DOI   PUBMED   ScienceOn
10 Ryu, H. S., H. K. Kim, W. C. Choi, M. H. Kim, S. Y. Park, N. S. Han, T. K. Oh, and J. K. Lee. 2006. New cold-adapted lipase from Photobacterium lipolyticum sp. nov. that is closely related to filamentous fungal lipases. Appl Microbiol Biotechnol. 70: 321-326   DOI   ScienceOn
11 Gerday, C., M. Aittaleb, M. Bentahir, J. P. Chessa, P. Claverie, T. Collins, S. D'Amico, J. Dumont, G. Garsoux et al. 2000. Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol. 18: 103-107   DOI   ScienceOn
12 Park, H. J., K. N. Uhm, and H. K. Kim, 2008. R-Stereoselective amidase from Rhodococcus erythrophlis No.7 acting on 4-chloro-3-hydroxybutyramide. J. Microbiol. Biotechnol. 18: 552-559   PUBMED
13 Demirjian, D. C., F. Moris-Varas, and C. S. Cassidy. 2001. Enzymes from extremophiles. Curr. Opin, Chem. Biol. 5: 144-151   DOI   ScienceOn
14 Elend, C., C. Schmeisser, C. Leggewie, P. Babiak, J. D. Carballeira, H. L. Steele, J. L. Reymond, K. E. Jaeger, and W. R. Streit. 2006. Isolation and biochemical characterization of two novel metagenome-derived esterases. Appl. Environ. Microbiol. 72: 3637-3645   DOI   ScienceOn
15 Kim, Y. J., G. S. Choi, S. B. Kim, G. S. Yoon, Y. S. Kim, and Y. W. Ryu. 2006. Screening and characterization of a novel esterase from a metagenomic library. Protein Expres. Purif. 45: 315-323   DOI   ScienceOn
16 Streit, W. R., R. Daniel, and K. E. Jaeger. 2004. Prospecting for biocatalysts and drugs in the genomes of non-cultured microorganisms. Curr. Opin. Biotechnol. 15: 285-290   DOI   ScienceOn
17 Jaeger, K. E. and T. Eggert. 2002. Lipases for biotechnology. Curr. Opin. Biotehnol. 13: 390-397   DOI   ScienceOn