• Title/Summary/Keyword: 저온성 광물

Search Result 40, Processing Time 0.023 seconds

Comparison of Some Physicochemical Properties and Adsorption of Organic Cations between Ca- and Na-bentonites (Ca-형 및 Na-형 벤토나이트의 제반 물성 및 유기양이온 흡착비교)

  • 고상모;김자영
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.243-257
    • /
    • 2002
  • Ca-type and Na-type bentonites show the great difference of some physicochemical properties. Na exchanged bentonite is mainly used for the foundry and construction materials in domestic utilization. This study tries to identify in detail the differences of some physicochemical properties and thermal properties between Ca-type and Na-type bentonites. Also the adsorption behavior and interlayer expansion for the HDTMA (Hexadecyltrimethylammonium) exchanged and CP (Cetylprydinium) exchanged Ca-type and Na-type bentonites were compared. Na-type bentonite shows the strong alkaline property, high viscosity and swelling compared to Ca-type bentonite. However, two types are very similar for the cation exchange capacity and MB (Methylene Blue) adsorption. The decomposition of adsorbed and interlayer water of Na-type bentonite is caused in the lower temperature than Ca-type bentonite. And Ca-type bentonite shows the decomposition of structural water in the lower temperature than Na-type bentonite. The interlayer expansion of montmorillonite resulted to the intercalation of HDTMA and CP into bentonite is so strongly caused from 12~15 $\AA$ to $40\AA$ (basal spacing). HDTMA-bentonite is almost expanded to $37~38\AA$ when 200% CEC equivalent amount of HDTMA is added, and CP-bentonite is fullly expanded to 40 $\AA$ in the 140% CEC equivalent amount of CP It means that CP causes the stronger interlayer expansion of montmorillonite and easier adsorption than HDTMA. Adsorption behaviors of CP into bentonite is so stable and continuously sorbed in the proportion to the treatment of amount until 200% of the CEC equivalents. CP-bentonite shows the same adsorption behavior regardless of Ca-type or Na-type montmorillonite.

Genetic Model of Mineral Exploration for the Korean Au-Ag Deposits; Mugeug Mineralized Area (한국 금-은 광상의 효율적 탐사를 위한 성인모델;무극 광화대를 중심으로)

  • 최선규;이동은;박상준;최상훈;강흥석
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.423-435
    • /
    • 2001
  • The gold-silver vein deposits in the Mugeug mineralized area are emplaced in late Cretaceous biotite granite associated with the pull-apart type Cretaceous Eumseong basin. Mugeug mine in northern part is composed of multiple veins showing relatively high gold fineness and is characterized by sericitization, chloritization and epidotization. The ore-forming fluids were evolved by dilution and cooling mechanisms at relatively high temperature and salinity (=30$0^{\circ}C$,1~9 equiv. wt. % NaCl) and highly-evolved meteoric water ($\delta$$^{18}$ O;-1.2~3.7$\textperthousand$) and gold mineralization associated with sulfides tormed at temperatures between 260 and 22$0^{\circ}C$ and within sulfur fugacity range of 10$^{-11.5}$ ~ 10$^{-13.5}$ atm. In contrast, Geumwang, Geumbong and Taegueg mines show the low fineness values, in southern part are characterized by increasing tendency of simple and/or stockwork veins and by kaolinitization, silicificatitan, carbonatization and smectitization. These droposits formed at relatively low temperature and salinity (<23$0^{\circ}C$, <3 equiv. wt. % NaCl) from ore-forming fluids containing greater amounts of less-evolved meteoric waters ($\delta$$^{18}$ O;-5.5~4.0$\textperthousand$), and silver mineralization representing various gold-and/or silver-bearing minerals formed at temperatures between 200 and 15$0^{\circ}C$ and from sulfur fugacity range of 10$^{-15}$ ~10$^{-18}$ atm These results imply that mineralization in the Mugueg area formed at shallow-crustal level and categorize these deposits as low-sulfidation epithermal type. The genetic differences between the northern and southern parts reflect the evolution of the hydrothermal system due to a different physicochemical environment from heat source area (Mugeug mine) to marginal area (Taegeum mine) in a geothermal field.

  • PDF

An Analysis of Material Property on Eartherwares Excavated at Auraji site in Jeongseon (정선 아우라지 출토 토기의 재료과학적 특성 분석)

  • Lee, Byeong Hoon
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.545-556
    • /
    • 2021
  • In this study, we aimed to elucidate the materialistic characteristics of 11 pieces of earthenware belonging to the Neolithic and Bronze Age excavated from Jeongseon Auraji, South Korea. As a result, the chemical composition of earthenwares belonging to the early Bronze Age was distributed in the intermediate area between the Neolithic and Bronze Age earthenwares, but no significant difference was confirmed based on their manufacturing period. Upon comparison, the earthenwares excavated from Jeongseon Auraji site were found to comprise less acidic components than those excavated from Yeongdong, and are characterized by the alkaline components depending on the excavated site. In the rare earth elements distribution pattern, all the analyzed earthenwares exhibited similar pattern, confirming that the raw materials present in the clay were the same. As a result of microstructure analysis, the clay particles and voids were found to be irregularly distributed in the analyzed earthenwares. Neolithic earthenwares exhibited many irregular voids, and an arrangement of aluminosilicate, including feldspar, was observed along with the clay substrate. Furthermore, we confirmed that the empty space in early Bronze Age earthenwares was filled with fine particles and cube crystals. Moreover, the main mineral phase of earthenwares excavated from Jeongseon Auraji exhibited similar composition, and therefore, there was no significant difference in the firing temperature of these earthenwares. The firing temperature of the earthenwares ranged from 750 to 850℃.

Engineering Geological Implications of Fault Zone in Deep Drill Cores: Microtextural Characterization of Pseudotachylite and Seismic Activity (시추코어 단층대에서의 지질공학적 의미: 슈도타킬라이트의 미세조직의 특징과 지진활동)

  • Choo, Chang-Oh;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.489-500
    • /
    • 2017
  • It is not rare that pseudotachylite, dark colored rock with glassy texture, is recognizable in deep core samples drilled up to 900 m from the surface. Pseudotachylite with widths varying few to 20 cm is sharply contacted or interlayered with the host rocks composed of Jurassic granite and Precambrian amphibolite gneiss, showing moderately ductile deformation or slight folding. Pseudotachylite occurring at varying depths in the deep drill core are slightly different in texture and thickness. There is evidence of fault gouge at shallower depths, although brittle deformation is pervasive in most drill cores and pseudotachylite is identified at random depth intervals. Under scanning electron microscope (SEM), it is evident that the surface of pseudotachylite is characterized by a smooth, glassy matrix even at micrometer scale and there is little residual fragments in the glass matrix except microcrystals of quartz with embayed shape. Such textural evidence strongly supports the idea that the pseudotachylite was generated through the friction melting related to strong seismic events. Based on X-ray diffraction (XRD) quantitative analysis, it consists of primary minerals such as quartz, feldspars, biotite, amphibole and secondary minerals including clay minerals, calcite and glassy materials. Such mineralogical features of fractured materials including pseudotachylite indicate that the fractured zone might form at low temperatures possibly below $300^{\circ}C$, which implies that the seismic activity related to the formation of pseudotachylite took place at shallow depths, possibly at most 10 km. Identification and characterization of pseudotachylite provide insight into a better understanding of the paleoseismic activity of deep grounds and fundamental information on the stability of candidate disposal sites for high-level radioactive waste.

Study on the Synthesis of Tricalcium Aluminate Clinker from Waste Shell and Spent Oil-Refining Catalyst (폐 패각과 정유 폐촉매를 사용한 Tricalcium Aluminate 클링커의 합성에 관한 연구)

  • Lee, Keon-Ho;Song, Tae-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.12 s.271
    • /
    • pp.933-938
    • /
    • 2004
  • The clinkerbility and the behaviour of formation of $3CaO{\cdot}Al_{2}O_3$ were studied using the mixture of waste oyster shell and spent oil-refining catalyst mainly by the mineral and microstructural observation. By virtue of the formation of $12CaO{\cdot}7Al_{2}O_3$ at relatively low temperature and its successive reaction with CaO, the $3CaO{\cdot}Al_{2}O_3$ clinkers were formed easily without affection of minor constituents contained in oyster shell. Thus clinkers were formed at $1400^{\circ}C$ directly but began to melt incongruently at higher temperature above that. Aluminium hydroxide, however, was not desirable as an aluminous raw materials of the clinker because rapid melting occurs before $3CaO{\cdot}Al_{2}O_3$ forms main clinker mineral.

Sulfide Chimney from the Cleft Segment, Juan de Fuca Ridge: Mineralogy and Fluid Inclusion (Juan de Fuca 해령 Cleft Segment에서 회수된 황화물 침니: 광물조성 및 유체포유물)

  • 윤성택;허철호;소칠섭;염승준;이경용
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.203-210
    • /
    • 2002
  • In order to elucidate the growth mechanism of sulfide chimney formed as a result of seafloor hydrothermal mineralization, we carried out the mineralogical and fluid inclusion studies on the inactive, sulfide- and silica-rich chimney which has been recovered from a hydrothermal field in the Cleft segment of the Juan de Fuca Ridge. According to previous studies, many active and inactive vents are present in the Cleft segment. The sulfide- and silica-rich chimney is composed of amorphous silica, pyrite, sphalerite and wurtzite with minor amounts of chalcopyrite and marcasite. The interior part of the chimney is highly porous and represents a flow channel. Open spaces within chimneys are typically coated with colloform layers of amorphous silica. The FeS content of Zn-sulfides varies widely from 13.9 to 34.3 mole% with Fe-rich core and Fe-poor rims. This variation possibly reflects the change of physicochemical characteristics of hydrothermal fluids. Chemical and mineralogical compositions of the each growth zone are also varied, possibly due to a thermal gradient. Based on the microthermometric measurements of liquid-rich, two-phase inclusions in amorphous silica that was precipitated in the late stage of mineralization, minimum trapping temperatures are estimated to be about 1140 to 145$^{\circ}$C with the salinities between 3.2 and 4.8 wt.% NaCI equiv. Although the actual fluid temperatures of the vent are not available, this study suggests that the lowtemperature conditions were predominant during the mineralization in the hydrothermal field at Cleft segment. Comparing with the previously reported chimney types, the morphology, colloform texture, bulk chemistry, and a characteristic mineral assemblage (pyrite + marcasite + wurtzite + amorphous silica) of this chimney indicate that the chimney have been formed from a relatively low-temperature (<250$^{\circ}$C) hydrothermal fluid that was changed by sluggish fluid flow and conductive cooling.

Study on the Illite Modification for Removal of Radioactive Cesium in Water Environment near Nuclear Facilities (원자력 시설 인근 수계에서 방사성 세슘 제거를 위한 일라이트 개질 연구)

  • Hwang, Jeonghwan;Choung, Sungwook;Shin, Woosik;Han, Weon Shik
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.113-120
    • /
    • 2018
  • Radioactive cesium($^{137}Cs$) can be released into the environment through severe nuclear accidents such as the Chernobyl and Fukushima, The $^{137}Cs$ is one of major monitoring radionuclides due to its chemical toxicity, ${\gamma}$ radiation and long half-life($t_{1/2}=30.2yrs$). It has been known well that illite adsorb selectively and strongly the cesium due to frayed edge sites. The quantity of the FES in the illite could be controlled by weathering processes. Therefore, this study was modified illite samples through artificial weathering in the laboratory to increase sorption efficiency for cesium. Abundant interlayer cations(i.e., K, Ca) were eluted within 1 day, while Si and Al were gradually released from the crystal structure. In addition, broad peaks of XRD indicated the occurrence of chemical weathering. The cesium sorption distribution coefficients increased up to approximately 2 times after the weathering. These results suggested that sorption capacity of illite could be enhanced for cesium through artificial weathering under low temperature.

Effects of Temperature on The Crystallization and Structural Stability of Struvite (MgNH4PO4·6H2O) (스트루바이트(MgNH4PO4·6H2O)의 결정화 및 구조 안정성에 미치는 온도 효과)

  • Lee, Seon Yong;Chang, Bongsu;Kng, Sue A;Lee, Young Jae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.29-39
    • /
    • 2020
  • A series of struvite (MgNH4PO4·6H2O) was synthesized and dried at various temperatures (15-60℃). Crystallization of struvite and its structural properties were significantly influenced by synthetic and drying temperature. Struvite was favorably formed at synthetic temperatures ≤30℃ with an inverse relationship between the crystallinity and synthetic temperature. The crystallinity of struvite was also significantly reduced by an increase in drying temperature from 45℃ to 60℃ due to the loss of structural water molecules and ammonium ions by the facilitated thermal decomposition. However, struvite formed at lower synthetic temperature showed higher crystallinity, and its amorphization by thermal decomposition was inhibited. These results demonstrate that struvite formed at low temperature with an stable condition thermodynamically through favorable crystallization shows high crystallinity and stability with respect to the structural and thermal resistance.

Synthesis of Hectorite by Hydrothemal Method (저온 수열법에 의한 헥토라이트 합성)

  • Jang, Young-Nam;Chae, Soo-Chun;Ryu, Gyoung-Won;Kim, You-Dong;Jang, Hee-Dong;Bae, In-Kook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.1-6
    • /
    • 2007
  • Hectorite was synthesized by a two-step hydrothermal process from $Mg(OH)_{2}$, water glass (${\sim}30\;wt%\;SiO_{2}$) and Li-compound at $90{\pm}5^{\circ}C$. The product shows excellent dispersion and swelling properties. The mixture of the starting materials was heated in a glass vessel for the first reaction with continuous stirring and the pH of the solution was adjusted to $6{\sim}8$, resulting in the formation of a precursor of hectorite. The excess salt components were washed out from the resulting slurry and then was matured in the glass vessel for the 2nd reaction. Li compound was added during the reaction. After a 10 h retention, the gel of hectorite was formed. The XRD pattern of the synthesized one was coincided with that of natural hectorite and SEM study revealed uniform grains 50 m in diameter. The d001 basal spacing of the product moved from 12 to $17.4\;{\AA}$ after glycolation treatment. The measured value of CEC and the swelling capacity was 90 cmol/kg and $60{\sim}70\;mL/2\;g$, respectively.

The Rietveld Structure Refinement of Natural Phlogopite Using Neutron Powder Diffraction (중성자분말회절법을 이용한 금운모 결정에 대한 리트벨트 구조분석)

  • 이철규;송윤구;전철민;김신애;성기훈
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.215-222
    • /
    • 2003
  • The Rietveld structure refinement for the natural trioctahedral mica, phlogopite-1M (Parker Mine, Quebec, Canada) has been done by high resolution neutron powder diffraction at $25^{\circ}C$ and -263$^{\circ}C$. The structural formula of phlogopite determined by electron probe microanalysis is $K_2$(M $g_{4.46}$F $e_{0.83}$A $l_{0.34}$ $Ti_{0.22}$)(S $i_{5.51}$A $l_{2.49}$) $O_{20}$(O $H_{3.59}$ $F_{0.41}$). Cell parameters are a=5.30∼5.31 $\AA$, b=9.18∼9.20 $\AA$, c=10.18∼10.21 $\AA$, $\beta$=100.06∼100.08$^{\circ}$. Refinements converged to R values in the range of $R_{p}$=2.35%, $R_{wp}$=3.01%, respectively. In this study, the OH bond length is calculated to 0.93 $\AA$ at room temperature and 1.03 $\AA$ at -263$^{\circ}C$, and the angles between OH vector and (001) plane are obtained 93.4$^{\circ}$∼93.6$^{\circ}$. The decrease in the length of OH with the increase in temperature should be due to the hydrogen bonding in the structure of phogopite.e.e.f phogopite.e.e.