Effects of Temperature on The Crystallization and Structural Stability of Struvite (MgNH4PO4·6H2O)

스트루바이트(MgNH4PO4·6H2O)의 결정화 및 구조 안정성에 미치는 온도 효과

  • Lee, Seon Yong (Department of Earth and Environmental Sciences, Korea University) ;
  • Chang, Bongsu (Department of Earth and Environmental Sciences, Korea University) ;
  • Kng, Sue A (Department of Earth and Environmental Sciences, Korea University) ;
  • Lee, Young Jae (Department of Earth and Environmental Sciences, Korea University)
  • 이선용 (고려대학교 지구환경과학과) ;
  • 장봉수 (고려대학교 지구환경과학과) ;
  • 강수아 (고려대학교 지구환경과학과) ;
  • 이영재 (고려대학교 지구환경과학과)
  • Received : 2020.02.27
  • Accepted : 2020.03.17
  • Published : 2020.03.31


A series of struvite (MgNH4PO4·6H2O) was synthesized and dried at various temperatures (15-60℃). Crystallization of struvite and its structural properties were significantly influenced by synthetic and drying temperature. Struvite was favorably formed at synthetic temperatures ≤30℃ with an inverse relationship between the crystallinity and synthetic temperature. The crystallinity of struvite was also significantly reduced by an increase in drying temperature from 45℃ to 60℃ due to the loss of structural water molecules and ammonium ions by the facilitated thermal decomposition. However, struvite formed at lower synthetic temperature showed higher crystallinity, and its amorphization by thermal decomposition was inhibited. These results demonstrate that struvite formed at low temperature with an stable condition thermodynamically through favorable crystallization shows high crystallinity and stability with respect to the structural and thermal resistance.

다양한 온도에서 스트루바이트(struvite, MgNH4PO4·6H2O)들이 합성 및 건조되었다. 스트루바이트의 결정화와 그 구조적 특성은 합성 온도와 건조 온도 모두에게 큰 영향을 받았다. 스트루바이트는 합성 온도 ≤30℃에서 순조롭게 형성되었으며, 결정도는 합성 온도와 역의 관계를 보였다. 또한, 스트루바이트 결정도는 건조 온도가 45℃에서 60℃로 증가함에 따라 감소되었으며, 이는 열분해로 인해 발생한 구조적 물 분자와 암모늄 이온의 손실로 촉진되었다. 그러나 낮은 합성 온도에서 합성된 스트루바이트 일수록 높은 결정도를 가지며, 열분해에 의한 비정질화가 억제되었다. 본 결과는 저온의 열역학적으로 안정한 조건에서 형성된 스트루바이트는 높은 결정성을 보이며, 이에 따른 구조 안정성과 열저항성을 갖음을 입증한다.



Supported by : National Research Foundation of Korea, Korea Environment Industry & Technology Institute

This work was supported by a National Research Foundation of Korea grant funded by the Korea government (No. 2017R1A2B4008454), a Korea Environment Industry & Technology Institute though Underground environmental pollution risk management technology development business Program, funded by Korea Ministry of Environment (No. 2018002470002), and by a Korea University Grant.


  1. Aage, H., Andersen, B.L., Blom, A. and Jensen, I. (1997) The solubility of struvite. Journal of Radioanalytical and Nuclear Chemistry 223(1-2), 213-215.
  2. Abbona, F. and Boistelle, R. (1979) Growth morphology and crystal habit of struvite crystals (MgNH4PO4.6H2O). Journal of Crystal Growth 46(3), 339-354.
  3. Abbona, F. and Franchiniangela, M. (1990) Crystallization of calcium and magnesium phosphates from solutions of low concentration. Journal of Crystal Growth 104(3), 661-671.
  4. Babic-Ivancic, V., Kontrec, J. and Brecevic, L. (2004) Formation and transformation of struvite and newberyite in aqueous solutions under conditions similar to physiological. Urological Research 32(5), 350-356.
  5. Babic-Ivancic, V., Kontrec, J., Kralj, D. and Brecevic, L. (2002) Precipitation diagrams of struvite and dissolution kinetics of different struvite morphologies. Croatica Chemica Acta 75(1), 89-106.
  6. Bhuiyan, M.I.H., Mavinic, D.S. and Beckie, R.D. (2007) A solubility and thermodynamic study of struvite. Environmental Technology 28(9), 1015-1026.
  7. Bhuiyan, M.I.H., Mavinic, D.S. and Koch, F.A. (2008) Thermal decomposition of struvite and its phase transition. Chemosphere 70(8), 1347-1356.
  8. Bouropoulos, N.C. and Koutsoukos, P.G. (2000) Spontaneous precipitation of struvite from aqueous solutions. Journal of Crystal Growth 213(3-4), 381-388.
  9. Carstensen, A., Herdean, A., Schmidt, S.B., Sharma, A., Spetea, C., Pribil, M. and Husted, S. (2018) The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiology 177(1), 271-284.
  10. Daniel, T.C., Sharpley, A.N., Edwards, D.R., Wedepohl, R. and Lemunyon, J.L. (1994) Minimizing surface water eutrophication from agriculture by phosphorus management. Journal of Soil and Water Conservation 49(2), 30-38.
  11. Ding, Z., Dong, B.Q., Xing, F., Han, N.X. and Li, Z.J. (2012) Cementing mechanism of potassium phosphate based magnesium phosphate cement. Ceramics International 38(8), 6281-6288.
  12. Frost, R.L., Weier, M.L. and Erickson, K.L. (2004) Thermal decomposition of struvite - Implications for the decomposition of kidney stones. Journal of Thermal Analysis and Calorimetry 76(3), 1025-1033.
  13. Gaterell, M.R., Gay, R., Wilson, R., Gochin, R.J. and Lester, J.N. (2000) An economic and environmental evaluation of the opportunities for substituting phosphorus recovered from wastewater treatment works in existing UK fertiliser markets. Environmental Technology 21(9), 1067-1084.
  14. Gertner, J.M. (1987) Phosphorus metabolism and its disorders in childhood. Pediatric annals 16(12), 957-965.
  15. Griffith, D.P. (1978) Struvite stones. Kidney International 13(5), 372-382.
  16. Hanhoun, M., Montastruc, L., Azzaro-Pantel, C., Biscans, B., Freche, M. and Pibouleau, L. (2011) Temperature impact assessment on struvite solubility product: A thermodynamic modeling approach. Chemical Engineering Journal 167(1), 50-58.
  17. Hao, X. and Chang, C. (2002) Effect of 25 annual cattle manure applications on soluble and exchangeable cations in soil. Soil science 167(2), 126-134.
  18. Kurtulus, G. and Tas, A.C. (2011) Transformations of neat and heated struvite (MgNH4PO4 center dot 6H(2)O). Materials Letters 65(19-20), 2883-2886.
  19. Li, H., Yao, Q.Z., Wang, Y.Y., Li, Y.L. and Zhou, G.T. (2015) Biomimetic synthesis of struvite with biogenic morphology and implication for pathological biomineralization. Scientific Reports 5.
  20. Mestres, G. and Ginebra, M.P. (2011) Novel magnesium phosphate cements with high early strength and antibacterial properties. Acta Biomaterialia 7(4), 1853-1861.
  21. Michalowski, T. and Pietrzyk, A. (2006) A thermodynamic study of struvite plus water system. Talanta 68(3), 594-601.
  22. Muster, T.H., Douglas, G.B., Sherman, N., Seeber, A., Wright, N. and Guzukara, Y. (2013) Towards effective phosphorus recycling from wastewater: Quantity and quality. Chemosphere 91(5), 676-684.
  23. Novais, S.V., Zenero, M.D.O., Tronto, J., Conz, R.F. and Cerri, C.E.P. (2018) Poultry manure and sugarcane straw biochars modified with MgCl2 for phosphorus adsorption. Journal of Environmental Management 214, 36-44.
  24. Nziguheba, G. (2007) Advances in integrated soil fertility management in sub-Saharan Africa: challenges and opportunities, pp. 149-160, Springer.
  25. Ohlinger, K.N., Young, T.M. and Schroeder, E.D. (1998) Predicting struvite formation in digestion. Water Research 32(12), 3607-3614.
  26. Sarkar, A.K. (1991) Hydration/dehydration characteristics of struvite and dittmarite pertaining to magnesium ammonium phosphate cement systems. Journal of Materials Science 26(9), 2514-2518.
  27. Sharpley, A., Daniel, T.C., Sims, J.T. and Pote, D.H. (1996) Determining environmentally sound soil phosphorus levels. Journal of Soil and Water Conservation 51(2), 160-166.
  28. Survey, U.G. (2005) Phosphate rock. Mineral Commodity Summaries, 122-123.
  29. Takeda, E., Ikeda, S. and Nakahashi, O. (2012) Lack of phosphorus intake and nutrition. Clinical calcium 22(10), 1487-1491.
  30. Van Vuuren, D.P., Bouwman, A.F. and Beusen, A.H. (2010) Phosphorus demand for the 1970-2100 period: a scenario analysis of resource depletion. Global Environmental Change 20(3), 428-439.
  31. Yang, F., Zhang, S.S., Sun, Y.Q., Tsang, D.C.W., Cheng, K. and Ok, Y.S. (2019) Assembling biochar with various layered double hydroxides for enhancement of phosphorus recovery. Journal of Hazardous materials 365, 665-673.