DOI QR코드

DOI QR Code

Engineering Geological Implications of Fault Zone in Deep Drill Cores: Microtextural Characterization of Pseudotachylite and Seismic Activity

시추코어 단층대에서의 지질공학적 의미: 슈도타킬라이트의 미세조직의 특징과 지진활동

  • Choo, Chang-Oh (Department of Earth and Environmental Sciences, Andong National University) ;
  • Jeong, Gyo-Cheol (Department of Earth and Environmental Sciences, Andong National University)
  • 추창오 (국립안동대학교 지구환경과학과) ;
  • 정교철 (국립안동대학교 지구환경과학과)
  • Received : 2017.12.08
  • Accepted : 2017.12.17
  • Published : 2017.12.30

Abstract

It is not rare that pseudotachylite, dark colored rock with glassy texture, is recognizable in deep core samples drilled up to 900 m from the surface. Pseudotachylite with widths varying few to 20 cm is sharply contacted or interlayered with the host rocks composed of Jurassic granite and Precambrian amphibolite gneiss, showing moderately ductile deformation or slight folding. Pseudotachylite occurring at varying depths in the deep drill core are slightly different in texture and thickness. There is evidence of fault gouge at shallower depths, although brittle deformation is pervasive in most drill cores and pseudotachylite is identified at random depth intervals. Under scanning electron microscope (SEM), it is evident that the surface of pseudotachylite is characterized by a smooth, glassy matrix even at micrometer scale and there is little residual fragments in the glass matrix except microcrystals of quartz with embayed shape. Such textural evidence strongly supports the idea that the pseudotachylite was generated through the friction melting related to strong seismic events. Based on X-ray diffraction (XRD) quantitative analysis, it consists of primary minerals such as quartz, feldspars, biotite, amphibole and secondary minerals including clay minerals, calcite and glassy materials. Such mineralogical features of fractured materials including pseudotachylite indicate that the fractured zone might form at low temperatures possibly below $300^{\circ}C$, which implies that the seismic activity related to the formation of pseudotachylite took place at shallow depths, possibly at most 10 km. Identification and characterization of pseudotachylite provide insight into a better understanding of the paleoseismic activity of deep grounds and fundamental information on the stability of candidate disposal sites for high-level radioactive waste.

심부 시추코어(900 m) 단층대에서는 검은 유리질이 특징인 슈도타킬라이트가 종종 산출된다. 폭이 수~20 cm인 슈도타킬라이트는 모암인 쥬라기 화강암과 선캄브리아기 각섬석편마암과 접촉하거나 교호하는데, 연성변형이나 약한 습곡구조를 수반한다. 슈도타킬라이트는 다양한 심도에서 산출되는데 조직과 두께 또한 약간 상이한 특징을 보여준다. 대부분의 시추코어에서는 취성변형이 우세하며, 단층비지는 주로 상부구간에서 발달하고, 슈도타킬라이트는 불규칙한 간격의 심도에서 나타난다. 주사전자현미경(SEM)으로 관찰하면, 기질내에 만곡된 극미립의 석영입자가 관찰되고, 슈도타킬라이트의 표면은 마이크론 스케일에서조차도 매끄러운 유리질 기질이 특징적인데, 이같은 현상은 본 지역의 슈도타킬라이트가 강한 지진활동에 의한 마찰용융에 의하여 생성되었음을 지시한다. X선회절 정량분석(XRD)에 의하면, 슈도타킬라이트는 석영, 장석, 각섬석과 같은 일차광물과 점토광물, 방해석, 유리기질물 등의 이차광물로 구성되어 있다. 이러한 광물조성은 슈도타킬라이트를 포함하는 단층파쇄대가 약 $300^{\circ}C$ 이하의 저온 또는 비교적 얕은 심도(약 10 km 내외)에서 형성되었음을 의미한다. 슈도타킬라이트는 강한 지진활동의 산물이므로, 이것의 산출특징 파악을 통하여 심부지반의 고기 지진활동 해석이나, 고준위방사성폐기물 처분장 후보지의 지반안정성에 대한 핵심적인 정보를 알 수 있다.

Keywords

References

  1. Bae, S. G., Choo, C.O., and Jang, Y. D., 2012, Mineralogical characteristics of tachylite occurring in basic dike, Basaltic Agglomerate Formation, Ulleung Island and its implications of volcanic activity, Journal of Mineralogical Society of Korea, 25(2), 63-76 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2012.25.2.063
  2. Camacho, A., Vernon, R. H., and Fitz Gerald, J. D., 1995, Large volumes of anhydrous pseudotachylite in the Woodroffe Thrust, eastern Musgraves Ranges, Australia. Journal of Structural Geology, 17, 371-383. https://doi.org/10.1016/0191-8141(94)00069-C
  3. Chae, B. G. and Chang, T. W., 1994, Movement history of Yangsan fault and its related fractures at Chongha-Yongdok area, Korea, Journal of the Geological Society of Korea, 30(4), 379-394 (in Korean with English abstract).
  4. Chang, C. J. and Chang, T. W, 2009, Behavioral characteristics of the Yangsan Fault based on geometric analysis of fault slip, The Journal of Engineering Geology, 19(3), 277-285 (in Korean with English abstract).
  5. Chang, T. W. and Choo, C. O., 1998, Formation processes of fault gouges and their K-Ar ages along the Dongrae Fault, The Journal of Engineering Geology, 8(2), 175-188 (in Korean with English abstract).
  6. Chang, T. W. and Choo, C. O., 1999, Faulting processes and KAr ages of fault gouges in the Yangsan Fault zone, Journal of Korean Earth Science Society, 20(1), 25-37(in Korean with English abstract).
  7. Chang, T. W., Chae, Y. Z., and Choo, C. O., 2005, Estimation of volume change and fluid-rock ratio of gouges in Quaternary faults, the eastern blocks of the Ulsan fault, Korea, The Journal of Engineering Geology, 15(3), 349-363 (in Korean with English abstract).
  8. Choi, J. H., Yang, S. J., and Kim, Y. S., 2009, Fault zone classification and structural characteristics of the southern Yangsan fault in the Sangcheon-ri area, SE Korea, Journal of the Geological Society of Korea, 45(1), 9-28 (in Korean with English abstract).
  9. Choo, C. O. and Chang, T. W., 2000, Characteristics of clay minerals in gouges of the Dongrae Fault, southeastern Korea, and implications for fault activity, Clays and Clay Minerals, 48(2), 204-212. https://doi.org/10.1346/CCMN.2000.0480206
  10. Di Toro, G., Pennacchioni, G., and Teza, G., 2005, Can pseudotachylytes be used to infer earthquake source parameters? An example of limitations in the study of exhumed faults, Tectonophysics, 402, 3-20. https://doi.org/10.1016/j.tecto.2004.10.014
  11. Hwang, J. H., Kihm, Y. H., Kim, Y. B., and Song K. Y., 2007, Tertiary hydroexplosion at Bonggil-ri, Yangbuk-myeon, Gyeongju, Journal of the Geological Society of Korea, 43(4) 453-462(in Korean with English abstract).
  12. Kang, H. C., Han, R., Kim, C. M., Cheon, Y., Cho, H., Yi, K., Son, M., and Kim, J. S., 2017, The Bonggil Pseudotachylyte, SE Korea: Its occurrence and characteristics. Journal of the Geological Society of Korea. 53(1), 173-191 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2017.53.1.173
  13. Kirkpatrick, J. D., Shipton, Z. K., and Persano, C., 2009, Pseudotachylytes: Rarely generated, rarely preserved, or rarely reported?: Seismological Society of America Bulletin, 99, 382-388. https://doi.org/10.1785/0120080114
  14. Kyung, J. B. and Chang, T. W., 2001, The latest fault movement on the northern Yangsan Fault zone around Yugye-ri area, southeast Korea, Journal of the Geological Society of Korea, 37(4), 563-577 (in Korean with English abstract).
  15. Kyung, J. B., 2010, Paleoseismological study and evaluation of maximum earthquake magnitude along the Yangsan and Ulsan Fault Zones in the southeastern part of Korea, Korean Society of Earth and Exploration Geophysicists, 13(3), 187-197(in Korean with English abstract).
  16. Lim, J. H. and Choo, C. O., 2017, Occurrence and genesis of obsidian in Gombawi welded tuff, Ulleung Island, Korea, Economic and Environmental Geology, 50(2), 105-116(in Korean with English abstract). https://doi.org/10.9719/EEG.2017.50.2.105
  17. Maddock, R. H., 1983, Melt origin of fault generated pseudotachylites as demonstrated by textures. Geology, 11, 105-8. https://doi.org/10.1130/0091-7613(1983)11<105:MOOFPD>2.0.CO;2
  18. Magloughlin, J.F., 1989, The nature and significance of pseudotachylite from the Nason terrane, North Cascade Mountains, Washington. Journal of Structural Geology, 11, 907-917. https://doi.org/10.1016/0191-8141(89)90107-7
  19. Magloughlin, J. F. 1992. Microstructural and chemical changes associated with cataclasis and friction melting at shallow crustal levels, the cataclasite-pseudotachylite connection, Tectonophysics, 204, 243-260. https://doi.org/10.1016/0040-1951(92)90310-3
  20. Moon, S. W., Yun, H. S., Kim, W. S., Na, J. H., Kim, C. Y., and Seo, Y. S., 2014, Correlation analysis between weight ratio and shear strength of fault materials using multiple regression analysis, The Journal of Engineering Geology, 24(3), 397-409 (in Korean with English abstract). https://doi.org/10.9720/kseg.2014.3.397
  21. Moon, S. W., Yun, H. S., Choo, C. O., Kim, W. S., and Seo, Y. S., 2015, A study on mineralogical and basic mechanical properties of fault gouges in 16 faults, Korea, Journal of Mineralogical Society of Korea, 28(2), 109-126(in Korean with English abstract). https://doi.org/10.9727/jmsk.2015.28.2.109
  22. Moon, S. W., Yun, H. S., Seo, Y. S., and Chae, B. G., 2017, Analysis on physical and mechanical properties of fault materials using laboratory tests, The Journal of Engineering Geology, 27(1), 91-101(in Korean with English abstract). https://doi.org/10.9720/KSEG.2017.1.91
  23. Philpotts, A. R., 1964. Origin of pseudotachylites. American Journal of Science, 262, 1008-1035. https://doi.org/10.2475/ajs.262.8.1008
  24. Proctor, B. and Lockner, D. A., 2016, Pseudotachylyte increases the post-slip strength of faults, Geology, 44(12), 1003-1006. https://doi.org/10.1130/G38349.1
  25. Shand, S. J., 1916, The pseudotachylite of Parijs (Orange Free State), and its relation to "Trap-Shotten Gneiss" and "Flinty Crush-Rock", Quarterly Journal of the Geological Society, 72, 198-221. https://doi.org/10.1144/GSL.JGS.1916.072.01-04.12
  26. Shimamato, T. and Nagahama, H., 1992, An argument against the crush origin of pseudotachylites based on the analysis of clast-size distribution. Journal of Structural Geology, 14, 999-1006. https://doi.org/10.1016/0191-8141(92)90031-Q
  27. Sibson, R. H, Moore, J. M., and Rankin, A. H., 1975, Seismic pumping-a hydrothermal fluid transport mechanism, Journal of Geological Society, London, 131, 653-659. https://doi.org/10.1144/gsjgs.131.6.0653
  28. Sibson, R. H., 1977, Fault Rocks and Fault Mechanisms, Journal of Geological Society, London, 133, 191-213. https://doi.org/10.1144/gsjgs.133.3.0191
  29. Song, S. J., Choo, C. O., Chang, C. J., and Jang, Y. D., 2017, A microstructural study of the fault gouge in the granite, Yangbuk, Gyeongju, southeastern Korea, with implications for multiple faulting, Geosciences Journal, 21(1), 1-19. https://doi.org/10.1007/s12303-016-0021-1
  30. Spray, J. G., 1987, Artificial generation of pseudotachylite using friction welding apparatus: simulation of melting on a fault plane, Journal of Structural Geology, 9, 49-60. https://doi.org/10.1016/0191-8141(87)90043-5
  31. Spray, J. G., 1995, Pseudotachylite controversy: Fact or friction? Geology, 23, 1119-1122. https://doi.org/10.1130/0091-7613(1995)023<1119:PCFOF>2.3.CO;2
  32. Spray, J. G. and Thompson, L. M., 1995, Friction melt distribution in a multi-ring impact basin, Nature, 373, 130-132. https://doi.org/10.1038/373130a0
  33. van der Pluijm, B. A. and Marshak, S., 2004, Earth Structure: An Introduction to Structural Geology and Tectonics (Second Edition), W. W. Norton & Company, Inc. 672p.
  34. Wang, H., Li, H., Janssen, C., Sun, Z., and Si, J., 2015, Multiple generations of pseudotachylyte in the Wenchuan fault zone and their implications for coseismic weakening, Journal of Structural Geology, 74, 159-171. https://doi.org/10.1016/j.jsg.2015.03.007