The Journal of the Korea institute of electronic communication sciences
/
v.11
no.2
/
pp.145-150
/
2016
The capability of accurate positioning and tracking is necessary to implement an unmanned autonomous driving system. The moving-baseline GPS Technique is a promising candidate to mitigate positioning errors of conventional GPS system. It provides accurate positioning data based on the phase difference between received signals from multiple GPS antennas mounted on the same platform. In this paper, we propose a dual-band dual-circularly-polarized antenna suitable for the moving-baseline GPS. The proposed antenna operates at GPS L1 and L2 bands, and fed by the side of the antenna instead of the bottom. The antenna is firstly designed by calculating theoretical values of key parameters, and then optimized by means of 3D full-wave simulation software. Simulation and measurement results show that the optimized antenna offers 6.1% and 3.7% bandwidth at L1 and L2, respectively, with axial ratio bandwidth of more than 1%. The size of the antenna is $73mm{\times}73mm{\times}6.4mm$, which is small and low-profile.
The Journal of Korean Institute of Communications and Information Sciences
/
v.41
no.12
/
pp.1950-1958
/
2016
Today, technique for precisely positioning vehicles is very important in C-ITS(Cooperative Intelligent Transport System), Self-Driving Car and other information technology relating to transportation. Though the most popular technology for vehicle positioning is the GPS, its accuracy is not reliable because of large delay caused by multipath effect, which is very bad for realtime traffic application. Therefore, in this paper, we proposed the Vision-Based High Accuracy Vehicle Positioning Technology. At the first step of proposed algorithm, the ROI is set up for road area and the vehicles detection. Then, center and four corners points of found vehicles on the road are determined. Lastly, these points are converted into aerial view map using homography matrix. By analyzing performance of algorithm, we find out that this technique has high accuracy with average error of result is less than about 20cm and the maximum value is not exceed 44.72cm. In addition, it is confirmed that the process of this algorithm is fast enough for real-time positioning at the $22-25_{FPS}$.
Journal of the Institute of Convergence Signal Processing
/
v.22
no.3
/
pp.110-115
/
2021
With the era of the 4th Industrial Revolution, education on artificial intelligence is one of the important topics. However, since existing education is aimed at knowledge, it is not suitable for developing the active problem-solving ability and AI utilization ability required by artificial intelligence education. To solve this problem, we proposes PBL-based education method in which learners learn in the process of solving the presented problem. The problem presented to the learner is a completed project. This project consists of three types: a classification model, the training data of the classification model, and the block code to be executed according to the classified result. The project works, but each component is designed to perform a low level of operation. In order to solve this problem, the learners can expect to improve their computational thinking skills by finding problems in the project through testing, finding solutions through discussion, and improving to a higher level of operation.
KIPS Transactions on Computer and Communication Systems
/
v.11
no.5
/
pp.139-146
/
2022
With the recent development of the Internet of Things (IoT) and the convergence of vehicles and IT technologies, high-performance applications such as autonomous driving are emerging, and multi-access edge computing (MEC) has attracted lots of attentions as next-generation technologies. In order to provide service to these computation-intensive tasks in low latency, many methods have been proposed to partition tasks so that they can be performed through cooperation of multiple MEC servers(MECSs). Conventional methods related to task partitioning have proposed methods for partitioning tasks on vehicles as mobile devices and offloading them to multiple MECSs, and methods for offloading them from vehicles to MECSs and then partitioning and migrating them to other MECSs. In this paper, the performance of task partitioning methods using offloading and migration is compared and analyzed in terms of service delay, blocking rate and energy consumption according to the method of selecting partitioning targets and the number of partitioning. As the number of partitioning increases, the performance of the service delay improves, but the performance of the blocking rate and energy consumption decreases.
Due to COVID-19, people are building new lifestyles such as online shopping, online travel, and video conferencing by limiting going out and gatherings. Such rapid social change is causing new problems and deepening existing problems at the same time. In particular, as online consumption increases significantly, traffic congestion, air pollution, and the heavy workload of delivery drivers are deepening in the daily logistics industry, and face-to-face delivery is emerging as a new problem. With the advent of the 4th industrial revolution, unmanned delivery using drones, artificial intelligence, and autonomous driving is emerging as an alternative to the existing logistics industry. However, space for logistics facilities and securing additional logistics sites due to drone flight are emerging as new problems to be solved. Therefore, it is intended to link additional services such as logistics movement, storage, and delivery by utilizing the existing transportation business, the subway, as a space for a logistics facility for drones that can solve existing problems and new problems.
최근 이슈가 되고 있는 자율주행차(Autonomous vehicle 또는 Self-driving car)를 실현하기 위해서는, 다양한 환경에서도 차량에 대한 끊김 없는 연결을 제공하는 커넥티드카(Connected car) 기술이 필수적이다. 현재 커넥티드카를 구현하기 위한 차량 네트워크(Vehicular network) 기술은 교통시스템 인프라 기반의 단일홉(Single-hop) 무선통신 기술이 주를 이루고 있다. 이러한 단일홉 통신은 커버리지가 교통시스템 인프라가 구축된 지역으로 제한된다. 따라서 차량 네트워크가 현재보다 더욱 넓은 지역을 커버하기 위해서는 차량 자체가 이동형 라우터 역할을 수행하여 차량 간의 전달을 통해 정보를 원거리로 전달할 수 있는 다중홉(Multi-hop) 통신 도입이 필요하다. 다중홉 차량 네트워크는 차량의 높은 동적 특성으로 인해 다수의 도전적인 기술적 이슈들을 가진다. 본고에서는 이러한 기술 이슈 중 차량 네트워크의 높은 이동성으로 발생할 수 있는 종단 노드 간 비연결성을 해결할 수 있는 기술인 지연감내형 차량 네트워킹(Delay-tolerant vehicular networking) 기술에 대한 주요 연구 동향을 살펴보고자 한다. 이를 위해 먼저 지연감내형 차량 네트워킹의 기술적 배경 및 주요 관련 기술들을 분석하고 이를 기반으로 향후 연구개발이 필요한 기술 이슈들을 정리한다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.20
no.3
/
pp.83-88
/
2020
With developing vehicle and communication technologies, cars can communicate with road-side infrastructures and among other cars. As autonomous driving cars have been developed, the cars are equipped with many sensors and powerful processing units. There are many studies related to provide cloud services to users by using available resources of connected cars. In this paper, we proposed a dynamic task size decision scheme that considers communication environment between a vehicle and a base station as well as available resources while allocating a proper task to each vehicle. Simulation results based on the proposed model show that a vehicle can complete its allocated task when we considers available resources and communication environments.
The Journal of the Korea institute of electronic communication sciences
/
v.12
no.1
/
pp.123-128
/
2017
This paper deals with performing missions through autonomous navigation using camera and other sensors. Extracting pose of the car is necessary to navigate safely within the given road. Homography is used to find it. Color image is converted into grey image and thresholding and edge is used to find control points. Two control ponits are converted into world coordinates using homography to find the angle and position of the car. Color is used to find traffic signal. It was confirmed that the given tasks performed well through experiments.
Collecting a rich but meaningful training data plays a key role in machine learning and deep learning researches for a self-driving vehicle. This paper introduces a detailed overview of existing open-source simulators which could be used for training self-driving vehicles. After reviewing the simulators, we propose a new effective approach to make a synthetic autonomous vehicle simulation platform suitable for learning and training artificial intelligence algorithms. Specially, we develop a synthetic simulator with various realistic situations and weather conditions which make the autonomous shuttle to learn more realistic situations and handle some unexpected events. The virtual environment is the mimics of the activity of a genuine shuttle vehicle on a physical world. Instead of doing the whole experiment of training in the real physical world, scenarios in 3D virtual worlds are made to calculate the parameters and training the model. From the simulator, the user can obtain data for the various situation and utilize it for the training purpose. Flexible options are available to choose sensors, monitor the output and implement any autonomous driving algorithm. Finally, we verify the effectiveness of the developed simulator by implementing an end-to-end CNN algorithm for training a self-driving shuttle.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.73-75
/
2022
Scene Text Recognition is a technology used in the field of artificial intelligence that requires manless robot, automatic vehicles and human-computer interaction. Though scene text images are distorted by noise interference, such as illumination, low resolution and blurring. Unlike previous studies that recognized only English, this paper shows a strong recognition accuracy including various characters, English, Korean, special character and numbers. Instead of selecting only one class having the highest probability value, a candidate word can be generated by considering the probability value of the second rank as well, thus a method can be corrected an existing language misrecognition problem.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.