• Title/Summary/Keyword: 자유-자유보

Search Result 938, Processing Time 0.029 seconds

Free Vibration Analysis of Parabolic Hollowed Beam-columns with Constant Volume (일정체적을 갖는 포물선형 중공 보-기둥의 자유진동 해석)

  • Lee, Tae-Eun;Lee, Byoung-Koo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.384-391
    • /
    • 2011
  • This paper deals with free vibrations of the parabolic hollowed beam-columns with constant volume. The cross sections of beam-column taper are the hollowed regular polygons whose depths are varied with the parabolic functional fashion. Volumes of the objective beam-columns are always held constant regardless given geometrical conditions. Ordinary differential equation governing free vibrations of such beam-columns are derived and solved numerically for determining the natural frequencies. In the numerical examples, hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, the relationships between non-dimensional frequency parameters and various beam-column parameters such as end constraints, side number, section ratio, thickness ratio and axial load are reported in tables and figures.

Structural Analysis of Frames with Shear Walls (전단벽(剪斷壁)을 가진 프레임의 구조해석(構造解析)에 관한 연구(研究))

  • Lee, Dong Guen;Kang, Suk Bong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.77-83
    • /
    • 1986
  • In this paper, an accurate model for structural analysis of frames with shear walls is introduced. Static and dynamic analysis of two example structures has been performed using the computer program SWAN which employes the newly developed 12 degrees of freedom plane stress element and the results are compared to those obtained using SAP IV. The 12 degrees of freedom element resulted in improved shear stress distribution in wall elements and bending moment in beam elements.

  • PDF

Free Vibrations of Horizontally Curved Beams with Rotatory Inertia and Shear Deformation (회전관성과 전단변형을 고려한 수평 곡선보의 자유진동)

  • 이병구;모정만;이태은;안대순
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.1
    • /
    • pp.63-69
    • /
    • 2003
  • The ordinary differential equations governing free vibrations of elastic horizontally curved beams are derived, in which the effects of rotatory inertia and shear deformation as well as the effects of both vertical and torsional inertias are included. Frequencies and mode shapes are computed numerically for parabolic curved beams with the hinged-hinged, hinged-clamped and clamped-clamped ends. Comparisons of natural frequencies between this study and ADINA are made to validate the theories and numerical methods developed herein. The lowest three natural frequency parameters are reported. with and without the effects of rotatory inertia and shear deformation. as functions of the three non-dimensional system parameters: the horizontal rise to span length ratio. the slenderness ratio and the stiffness parameter.

Free Vibrations of Tapered Beams with Static Deflection due to Self-Weight (자중에 의한 정적 처짐을 고려한 변단면 보의 자유진동)

  • 이병구;이태은;안대순;김영일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.423-428
    • /
    • 2002
  • A numerical method is presented to obtain natural frequencies and mode shapes of tapered beams with static deflections due to self-weight. The differential equation governing the free vibrations of beam taken into account the static deflection due to self-weight is derived and solved numerically. The hinged-hinged, clamped-clamped and clamped-hinged and clamped-free end constraints are applied in the numerical examples. As the numerical results, the lowest three natural frequencies versus distributed slenderness ratio and section ratio are reported in figures. And for the comparison purpose, the typical mode shapes with the effects of static deflection are presented in figures.

  • PDF

Free Vibrations of Tapered Beams with General Boundary Conditions and Tip Masses (끝단 질량과 일반적인 단부조건을 갖는 변단면 보의 자유진동)

  • 오상진;이병구;박광규;이종국
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.802-807
    • /
    • 2003
  • The purpose of this paper is to investigate the free vibration characteristics of tapered beams with translational and rotational springs and tip masses at the ends. The beam model is based on the classical Bernoulli-Euler beam theory. The governing differential equation for the free vibrations of linearly tapered beams is solved numerically using the corresponding boundary conditions. Numerical results are compared with existing solutions by other methods for cases in which they are available. The lowest three natural frequencies are calculated over a wide range of non-dimensional system parameters: the translational spring parameter, the rotational spring parameter, the mass ratio and the dimensionless mass moment of inertia.

  • PDF

Free Vibration Analysis of Curved Beams with Thin-Walled Cross-Section (두께가 얇은 단면을 갖는 곡선보의 자유진동 해석)

  • 이병구;박광규;오상진
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1193-1199
    • /
    • 1999
  • This paper deals with the free vibrations of circular curved beams with thin-walled cross-section. The differential equation for the coupled flexural-torsional vibrations of such beams with warping is solved numerically to obtain natural frequencies and mode shapes. The Runge-Kutta and determinant search methods, respectively, are used to solve the governing differential equation and to compute the eigenvalues. The lowest three natural frequencies and corresponding mode shapes are calculated for the thin-walled horizontally curved beams with hinged-hinged, hinged-clamped, and clamped-clamped end constraints. A wide range of opening angle of beam, warping parameter, and two different values of slenderness ratios are considered. Numerical results are compared with existing exact and numerical solutions by other methods.

  • PDF

Free Vibrations of Generally Restrained Beams (일반적인 단부조건을 갖는 보의 자유진동)

  • 신성철;김봉규;안대순;김선기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.864-869
    • /
    • 2003
  • The purpose of this paper is to investigate the free vibration characteristics of tapered beams with translational and rotational springs and point masses at the ends. The beam model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertia and shear deformation. The governing differential equation for the free vibrations of linearly tapered beams is solved numerically using the corresponding boundary conditions. Numerical results are compared with existing solutions by other methods for cases in which they are available. The lowest four natural frequencies are calculated over a range of non-dimensional system parameters.

  • PDF

Free Vibrations of Stepped Horizontally Curved Beams with Variable Curvature (불연속 변화단면 변화곡률 수평 곡선보의 자유진동)

  • 이태은;안대순;이병구;김권식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.858-863
    • /
    • 2003
  • In the practical engineering fields, the horizontally curved beams are frequently erected as the major/minor structural components. The effects of both variable curvature and variable cross-section on structural behavior are very important and therefore these effects should be included in structural analyses. From this viewpoint, this paper deals with the free vibrations of horizontally curved beams with variable curvature and variable cross-section. In this study, the parabola as the curvilinear shape and stepped beam as the variable cross-section are considered. The ordinary differential equation governing free vibrations of such beams are derived. For calculating the natural frequencies, the governing equations are solved by numerical methods. The Runge-Kutta and Determinant search Methods are used for integrating the differential equations and for calculating the natural frequencies, respectively. With regard to numerical results, the relationships between frequency parameters and various beam parameters are presented in the forms of Table and Figures.

  • PDF

Free Vibration Analysis of Simply Supported Beam with Double Cracks (이중크랙을 가진 단순지지 보의 자유진동 해석)

  • Ahn, Sung-Jin;Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.600-603
    • /
    • 2005
  • In this paper we studied about the effect of the double cracks on the dynamic behavior of a simply supported beam. The equation of motion is derived by using Lagrange's equation and analyzed by numerical method. The simply supported beam is modeled by the Euler-Bernoulli beam theory. The crack section is represented by a local flexibility matrix connecting three undamaged beam segments. The influences of the crack depth and position of each crack on the vibration mode and the natural frequencies of a simply supported beam are analytically clarified. The theoretical results are also validated by a comparison with experimental measurements.

  • PDF