• Title/Summary/Keyword: 자연전위 측정

Search Result 47, Processing Time 0.026 seconds

The Method Effect of Reinforced Concrete by Applying Impressed Current Cathodic Protection (외부전원법을 적용한 철근콘크리트의 방식효과)

  • Lee, Hae-Seung;Cho, Gyu-Hwan;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.60-61
    • /
    • 2013
  • For reinforced concrete structures located in a sea environment, the Impressed Current Cathodic Protection (ICCP) is mostly used as a signature method to prevent steel corrosion. For this research, specimens to which the ICCP is applied were manufactured under the assumption of two following cases the specimens are exposed to various salt damage environments (submerged zone, tidal zone), and deteriorative factors (crack) occur in concrete. For the specimens manufactured, an enhancement experiment for deterioration was conducted through regular cycle change under the temperature between 15 ~ 70℃ with 70 ~ 90% humidity. Afterwards, the method effect was verified through a half-cell method and application of the ICCP derived from salt damage environments was investigated.

  • PDF

Negative apparent resistivity in dipole-dipole electrical surveys (쌍극자-쌍극자 전기비저항 탐사에서 나타나는 음의 겉보기 비저항)

  • Jung, Hyun-Key;Min, Dong-Joo;Lee, Hyo-Sun;Oh, Seok-Hoon;Chung, Ho-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.33-40
    • /
    • 2009
  • In field surveys using the dipole-dipole electrical resistivity method, we often encounter negative apparent resistivity. The term 'negative apparent resistivity' refers to apparent resistivity values with the opposite sign to surrounding data in a pseudosection. Because these negative apparent resistivity values have been regarded as measurement errors, we have discarded the negative apparent resistivity data. Some people have even used negative apparent resistivity data in an inversion process, by taking absolute values of the data. Our field experiments lead us to believe that the main cause for negative apparent resistivity is neither measurement errors nor the influence of self potentials. Furthermore, we also believe that it is not caused by the effects of induced polarization. One possible cause for negative apparent resistivity is the subsurface geological structure. In this study, we provide some numerical examples showing that negative apparent resistivity can arise from geological structures. In numerical examples, we simulate field data using a 3D numerical modelling algorithm, and then extract 2D sections. Our numerical experiments demonstrate that the negative apparent resistivity can be caused by geological structures modelled by U-shaped and crescent-shaped conductive models. Negative apparent resistivity usually occurs when potentials increase with distance from the current electrodes. By plotting the voltage-electrode position curves, we could confirm that when the voltage curves intersect each other, negative apparent resistivity appears. These numerical examples suggest that when we observe negative apparent resistivity in field surveys, we should consider the possibility that the negative apparent resistivity has been caused by geological structure.

Synthesis and Electrolyte Characterization of 1-Benzyl-3-butylimidazolium Hydroxide Ionic Liquid (1-Benzyl-3-butylimidazolium Hydroxide 이온성액체 합성 및 전해질 특성 조사)

  • Salman, Muhammad;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.603-606
    • /
    • 2020
  • A hydrophilic alkaline room temperature ionic liquid electrolyte (RT-IL) carrying hydroxide ion as an anion and 1-benzyl-3-butylimidazolium as a cation was synthesized. Electrochemical, physical and structural properties of the synthesized RT-IL were characterized using cyclic voltammetry, ionic conductivity, viscosity, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), FT-IR, and 1H-NMR measurements. High ionic conductivity and low viscosity characteristics comparable to 0.1 M KCl electrolyte solution were achieved for the RT-IL in addition to a wide electrochemical potential window of about 4.4 V. The results indicate that the RT-IL is promising for future applications as an alternative electrolyte to energy and environmental research fields.

Development of Mirror Neuron System-based BCI System using Steady-State Visually Evoked Potentials (정상상태시각유발전위를 이용한 Mirror Neuron System 기반 BCI 시스템 개발)

  • Lee, Sang-Kyung;Kim, Jun-Yeup;Park, Seung-Min;Ko, Kwang-Enu;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.62-68
    • /
    • 2012
  • Steady-State Visually Evoked Potentials (SSVEP) are natural response signal associated with the visual stimuli with specific frequency. By using SSVEP, occipital lobe region is electrically activated as frequency form equivalent to stimuli frequency with bandwidth from 3.5Hz to 75Hz. In this paper, we propose an experimental paradigm for analyzing EEGs based on the properties of SSVEP. At first, an experiment is performed to extract frequency feature of EEGs that is measured from the image-based visual stimuli associated with specific objective with affordance and object-related affordance is measured by using mirror neuron system based on the frequency feature. And then, linear discriminant analysis (LDA) method is applied to perform the online classification of the objective pattern associated with the EEG-based affordance data. By using the SSVEP measurement experiment, we propose a Brain-Computer Interface (BCI) system for recognizing user's inherent intentions. The existing SSVEP application system, such as speller, is able to classify the EEG pattern based on grid image patterns and their variations. However, our proposed SSVEP-based BCI system performs object pattern classification based on the matters with a variety of shapes in input images and has higher generality than existing system.

Development of Voltammetric Nanobio-incorporated Analytical Method for Protein Biomarker Specific to Early Diagnosis of Lung Cancer (폐암 조기 진단을 위한 단백질 바이오마커 측정용 전압-전류법 기반의 나노바이오 분석법 개발)

  • Li, Jingjing;Si, Yunpei;Nde, Dieudonne Tanue;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.461-466
    • /
    • 2021
  • In this article, a portable and cost-effective voltammetric biosensor with nanoparticles was developed for the measurements of heterogeneous nuclear ribonucleoprotein A1 protein (hnRNP A1) biomarker which can potentially be used for lung cancer diagnosis. Gold nanoparticles were first electrodeposited onto screen printed carbon electrode (SPCE) followed by immobilizing a single stranded DNA aptamer specific to hnRNP A1 onto the electrode surface. Ethanolamine was also used when immobilizing DNA aptamer on the surface to prevent signals from non-specific adsorption events. Sequential injection of hnRNP A1 biomarker and anti-hnRNP A1 conjugated with alkaline phosphatase (ALP) onto the aptamer chip surface allows to form the sandwich complex of DNA aptamer/hnRNP A1/ALP-anti-hnRNP A1 on the electrode surface which further reacted with 4-aminophenyl phosphate (APP). The electrocatalytic reaction of the enzyme, ALP, and the substrate, APP, resulting in the oxidative current response changes at -0.05 and -0.17 V (vs. Ag/AgCl) against the hnRNP A1 concentration was measured using cyclic and differential pulse voltammetry, respectively. The Au nanoparticles-integrated voltammetric biosensor was applied to analyze human normal serum solutions possibly suggesting potential applicability for lung cancer diagnosis.

Corrosion Resistance of Cr-bearing Rebar in Concrete Subjected to Carbonation and Chloride Attack (중성화와 염해의 복합 열화 환경하의 콘크리트 내에서의 Cr강방식철근의 방식성)

  • Tae, Sung-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.115-122
    • /
    • 2006
  • Ten types of steel bars having different Cr contents were embedded in concretes with chloride ion contents of 0.3, 0.6, 1.2, and $2.4kg/m^3$ to fabricate specimens assuming such deteriorative environments. After being carbonated to the reinforcement level, these concretes were subjected to corrosion-accelerating cycles of heating/cooling and drying/wetting. The time-related changes in the corrosion area and corrosion loss of the Cr-bearing rebars were then measured to investigate their corrosion resistance. The results revealed that in a deteriorative environment prone to both carbonation and chloride attack, corrosion resistance was evident with a Cr content of 7% or more and 9% or more in concretes with chloride ion contents of 1.2 and $2.4kg/m^3$, respectively.

Application of Geophysical Methods to Detection of a Preferred Groundwater Flow Channel at a Pyrite Tailings Dam (황철석 광산 광미댐에서의 지하수흐름 경로탐지를 위한 물리탐사 적용)

  • Hwang, Hak Soo
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.137-142
    • /
    • 1997
  • At the tailings dam of the disused Brukunga pyrite mine in South Australia, reaction of groundwater with the tailings causes the formation and discharge of sulphuric acid. There is a need to improve remediation efforts by decreasing groundwater flow through the tailings dam. Geophysical methods have been investigated to determine whether they can be used to characterise variations in depth to watertable and map preferred groundwater flow paths. Three methods were used: transient electromagnetic (TEM) soundings, direct current (DC) soundings and profiling, and self potential (SP) profiling. The profiling methods were used to map the areal extent of a given response, while soundings was used to determine the variation in response with depth. The results of the geophysical surveys show that the voltages measured with SP profiling are small and it is hard to determine any preferred channels of groundwater flow from SP data alone. Results obtained from TEM and DC soundings, show that the DC method is useful for determining layer boundaries at shallow depths (less than about 10 m), while the TEM method can resolve deeper structures. Joint use of TEM and DC data gives a more complete and accurate geoelectric section. The TEM and DC measurements have enabled accurate determination of depth to groundwater. For soundings centred at piezometers, this depth is consistent with the measured watertable level in the corresponding piezometer. A map of the watertable level produced from all the TEM and DC soundings at the site shows that the shallowest level is at a depth of about 1 m, and occurs at the southeast of the site, while the deepest watertable level (about 17 m) occurs at the northwest part of the site. The results indicate that a possible source of groundwater occurs at the southeast area of the dam, and the aquifer thickness varies between 6 and 13 m. A map of the variation of resistivity of the aquifer has also been produced from the TEM and DC data. This map shows that the least resistive (i.e., most conductive) section of the aquifer occurs in the northeast of the site, while the most resistive part of the aquifer occurs in the southeast. These results are interpreted to indicate a source of fresh (resistive) groundwater in the southeast of the site, with a possible further source of conductive groundwater in the northeast.

  • PDF

Enhanced Hole Concentration of p-GaN by Sb Surfactant (Sb 계면활성제에 의한 p-GaN 박막의 홀농도 향상)

  • Kim, J.Y.;Park, S.J.;Moon, Y.B.;Kwon, M.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.4
    • /
    • pp.271-275
    • /
    • 2011
  • The role and effect of Sb surfactant on structure and properties of p type gallium nitride (GaN) epilayers have been investigated. It was found that there was a increase of hole concentration with Sb surfactant, compared to typical Mg-doped p-GaN. The structural and optical quality of p-GaN epilayers were accessed by x-ray diffraction, photoluminescence and atomic force microscope measurements. The results clearly show that the increase in hole concentration with Sb surfactant can be resulted from decrease in the dislocations and nitrogen point defects.

Characterization of Behavior of Colloidal Zero-Valent Iron and Magnetite in Aqueous Environment (나노크기의 교질상 영가철 및 자철석에 대한 수용상의 거동특성)

  • Lee, Woo Chun;Kim, Soon-Oh;Kim, Young-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.95-108
    • /
    • 2015
  • Nano-sized iron colloids are formed as acid mine drainage is exposed to surface environments and is introduced into surrounding water bodies. These iron nanomaterials invoke aesthetic contamination as well as adverse effects on aqueous ecosystems. In order to control them, the characteristics of their behaviour should be understood first, but the cumulative research outputs up to now are much less than the expected. Using zero-valent iron (ZVI) and magnetite, this study aims to investigate the behaviour of iron nanomaterials according to the change in the composition and pH of background electrolyte and the concentration of natural organic matter (NOM). The size and surface zeta potential of iron nanomaterials were measured using dynamic light scattering. Characteristic behaviour, such as aggregation and dispersion was compared each other based on the DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory. Whereas iron nanomaterials showed a strong tendency of aggregation at the pH near point of zero charge (PZC) due to electrostatic attraction between particles, their dispersions became dominant at the pH which was higher or lower than PZC. In addition, the behaviour of iron nanomaterials was likely to be more significantly influenced by cations than anions in the electrolyte solutions. Particularly, it was observed that divalent cation influenced more effectively than monovalent cation in electrostatic attraction and repulsion between particles. It was also confirmed that the NOM enhanced the dispersion nanomaterials with increasing the negative charge of nanomaterials by coating on their surface. Under identical conditions, ZVI aggregated more easily than magnetite, and which would be attributed to the lower stability and larger reactivity of ZVI.

Effects of alloy elements on electrochemical characteristics improvement of stainless steel in sea water (해수환경하에서 스테인리스강의 전기화학적 특성 개선을 위한 합금원소의 영향)

  • Lee, Jung-Hyung;Choi, Yong-Won;Jang, Seok-Ki;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.890-899
    • /
    • 2014
  • Austenitic stainless steel is widely used in various industries due to its excellent corrosion resistance. However, Cr carbides precipitation along the grain boundaries after heat treatment or welding may develop Cr depleted zone, which acts as a preferential site for intergranular corrosion attack. To resolve this, carbon stabilizing element such as Ti or Nb are added to suppress formation of Cr carbides. However, there are few reports on corrosion characteristics under seawater environment of the stabilized stainless steel. This study investigated the effects of alloying contents on the electrochemical characteristics in seawater of stainless steel containing stabilizing element(Ti and Nb). To achieve this, the changes on the microstructure due to alloying were observed with microscope, and the electrochemical characteristics were determined by measurement of natural potential and potentiodynamic polarization experiments. The microscopic observation revealed that all specimens had inclusions other than the austenite matrix phase due to the addition of alloying elements. Such inclusions are considered to have different electrochemical characteristics from those of the matrix, and thus a clear distinction was found according to the type of stabilizers and the contents. The results of this study suggest that it is important to consider the effects of alloying contents on the electrochemical characteristics in seawater with the addition of Ti or Nb into austenitic stainless steel.