DOI QR코드

DOI QR Code

Development of Voltammetric Nanobio-incorporated Analytical Method for Protein Biomarker Specific to Early Diagnosis of Lung Cancer

폐암 조기 진단을 위한 단백질 바이오마커 측정용 전압-전류법 기반의 나노바이오 분석법 개발

  • Li, Jingjing (Department of Chemistry, Kyungpook National University) ;
  • Si, Yunpei (Department of Chemistry, Kyungpook National University) ;
  • Nde, Dieudonne Tanue (Department of Chemistry, Kyungpook National University) ;
  • Lee, Hye Jin (Department of Chemistry, Kyungpook National University)
  • 리징징 (경북대학교 자연과학대학 화학과) ;
  • 스윈페이 (경북대학교 자연과학대학 화학과) ;
  • 누드듀돈타뉴 (경북대학교 자연과학대학 화학과) ;
  • 이혜진 (경북대학교 자연과학대학 화학과)
  • Received : 2021.07.02
  • Accepted : 2021.07.16
  • Published : 2021.08.10

Abstract

In this article, a portable and cost-effective voltammetric biosensor with nanoparticles was developed for the measurements of heterogeneous nuclear ribonucleoprotein A1 protein (hnRNP A1) biomarker which can potentially be used for lung cancer diagnosis. Gold nanoparticles were first electrodeposited onto screen printed carbon electrode (SPCE) followed by immobilizing a single stranded DNA aptamer specific to hnRNP A1 onto the electrode surface. Ethanolamine was also used when immobilizing DNA aptamer on the surface to prevent signals from non-specific adsorption events. Sequential injection of hnRNP A1 biomarker and anti-hnRNP A1 conjugated with alkaline phosphatase (ALP) onto the aptamer chip surface allows to form the sandwich complex of DNA aptamer/hnRNP A1/ALP-anti-hnRNP A1 on the electrode surface which further reacted with 4-aminophenyl phosphate (APP). The electrocatalytic reaction of the enzyme, ALP, and the substrate, APP, resulting in the oxidative current response changes at -0.05 and -0.17 V (vs. Ag/AgCl) against the hnRNP A1 concentration was measured using cyclic and differential pulse voltammetry, respectively. The Au nanoparticles-integrated voltammetric biosensor was applied to analyze human normal serum solutions possibly suggesting potential applicability for lung cancer diagnosis.

본 논문에서는 이동성이 좋고 경제적이며, 간편하게 일회용 진단칩으로 제작 가능한 스크린 프린팅 한 탄소칩 전극[screen printed carbon electrode (SPCE)] 기반의 전압전류법 나노물질 융합형 바이오센서를 제작하여 폐암 조기진단에 활용 가능한 단백질 표지 인자 중에 하나인 heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) 단백질의 농도를 정량 분석하고자 하였다. 먼저 SPCE 표면에 금 나노입자를 전기적으로 증착한 후 크로스링커를 이용하여 hnRNP A1에 특이적으로 결합할 수 있는 바이오리셉터인 DNA 압타머를 고정하였다. Ethanolamine을 블로킹 시약으로 사용하여 압타머와 함께 센서 표면에 고정하여 그 표면을 처리함으로써 비특이적인 생물질의 흡착에 의한 방해 신호를 최소화하고자 하였다. DNA칩과 hnRNP A1 용액을 접촉하여 DNA와 hnRNP A1을 결합시킨 후 alkaline phosphatase (ALP) 효소로 접합한 hnRNP A1 항체(anti-hnRNP A1)을 센서칩 표면으로 주입하여 샌드위치 복합체를 형성하고, 이를 기질인 4-aminophenyl phosphate (APP)와 효소-기질 특이적 산화 반응에 의한 전류 변화를 순환 전압전류법과 시차 펄스전압전류법으로 측정하여 단백질의 농도를 정량적으로 분석하였다. 상기 산화 반응에 의한 피크 전류 변화는 순환전압전류법과 시차 펄스 전압전류법을 사용할 때 -0.05와 -0.17 V (vs. Ag/AgCl) 전위 값에서 각각 일어났다. 개발한 나노바이오센서를 실제 정상인 혈청 시료 분석에 적용 가능함을 보여줌으로써 혈청 한 방울로 폐암의 조기진단 가능성을 제시하고자 하였다.

Keywords

Acknowledgement

This research was supported by Kyungpook National University Development Project Research Fund, 2018.

References

  1. J. Ferlay, M. Colombet, I. Soerjomataram, D. M. Parkin, M. Pineros, A. Znaor, and F. Bray, Cancer statistics for the year 2020: an overview, Int. J. Cancer, 149, 778-789 (2021). https://doi.org/10.1002/ijc.33588
  2. H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin., 71, 209-249 (2021). https://doi.org/10.3322/caac.21660
  3. B. Youn, N. A. Trikalinos, V. Mor, I. B. Wilson, and I. J. Dahabreh, Real-world use and survival outcomes of immune checkpoint inhibitors in older adults with non-small cell lung cancer, Cancer, 126, 978-985 (2020). https://doi.org/10.1002/cncr.32624
  4. S. M. Hanash, E. J. Ostrin, and J. F. Fahrmann, Blood based biomarkers beyond genomics for lung cancer screening, Transl. Lung Cancer Res., 7, 327-335 (2018). https://doi.org/10.21037/tlcr.2018.05.13
  5. H. G. Ryu, Y. Jung, N. Lee, J. Y. Seo, S. W. Kim, K. H. Lee, D.Y. Kim, and K.T. Kim, HNRNP A1 promotes lung cancer cell proliferation by modulating VRK1 translation, Int. J. Mol. Sci., 22, 5506 (2021). https://doi.org/10.3390/ijms22115506
  6. S Lee, E Goh, and H. J. Lee, Research trend of biochip sensors for biomarkers specific to diagnostics of lung cancer diseases, Appl. Chem. Eng., 29, 645-651 (2018). https://doi.org/10.14478/ACE.2018.1110
  7. A Fajri, E Goh, S. Lee, and H. J. Lee, Analysis of human serum amyloid A-1 concentrations using a lateral flow immunoassay with CdSe/ZnS quantum dots, Appl. Chem. Eng., 30, 429-434 (2019). https://doi.org/10.14478/ACE.2019.1044
  8. M. Hasanzadeh, and N. Shadjou, Advanced nanomaterials for use in electrochemical and optical immunoassays of carcinoembryonic antigen. A review, Microchim. Acta, 184, 389-414 (2017). https://doi.org/10.1007/s00604-016-2066-2
  9. L. J. Zhi, and A. L. Sun, Platinum nanozyme-encapsulated poly(amidoamine) dendrimer for voltammetric immunoassay of pro-gastrin-releasing peptide, Anal. Chim. Acta, 1134, 106-114 (2020). https://doi.org/10.1016/j.aca.2020.08.026
  10. H. Filik, and A. A. Avan, Electrochemical immunosensors for the detection of cytokine tumor necrosis factor alpha: a review, Talanta, 211, 120758 (2020). https://doi.org/10.1016/j.talanta.2020.120758
  11. N.-F. Chiu, and H.-T. Yang, High-sensitivity detection of the lung cancer biomarker CYFRA21-1 in serum samples using a carboxyl-MoS2 functional film for SPR-based immunosensors, Front. Bioeng. Biotechnol., 8, 234 (2020). https://doi.org/10.3389/fbioe.2020.00234
  12. V. Ranganathan, S. Srinivasan, A. Singh, and M .C. DeRosa, An aptamer-based colorimetric lateral flow assay for the detection of human epidermal growth factor receptor 2 (HER2), Anal. Biochem., 588, 113471 (2020). https://doi.org/10.1016/j.ab.2019.113471
  13. S. Lee, and H. J. Lee, Recent research trend in lateral flow immunoassay strip (LFIA) with colorimetric method for detection of cancer biomarkers, Appl. Chem. Eng., 31, 585-590 (2020). https://doi.org/10.14478/ACE.2020.1093
  14. A. Khanmohammadi, A. Aghaie, E. Vahedi, A. Qazvini, M. Ghanei, A. Afkhami, A. Hajian, and H. Bagheri, Electrochemical biosensors for the detection of lung cancer biomarkers: a review, Talanta, 206, 120251 (2020). https://doi.org/10.1016/j.talanta.2019.120251
  15. Y. Si, and H.J. Lee, Carbon nanomaterials and metallic nanoparticles-incorporated electrochemical sensors for small metabolites: Detection methodologies and applications, Curr. Opin. Electrochem., 22, 234-243 (2020). https://doi.org/10.1016/j.coelec.2020.08.007
  16. G. Yang, Z. Xiao, C. Tang, Y. Deng, H. Huang, and Z. He, Recent advances in biosensor for detection of lung cancer biomarkers, Biosens. Bioelectron., 141, 111416 (2019). https://doi.org/10.1016/j.bios.2019.111416
  17. A. A. Kava, and C. S. Henry, Exploring carbon particle type and plasma treatment to improve electrochemical properties of stencil-printed carbon electrodes, Talanta, 221, 121553 (2021). https://doi.org/10.1016/j.talanta.2020.121553
  18. A. Roointan, T. Ahmad Mir, S. Ibrahim Wani, R. Mati Ur, K.K. Hussain, B. Ahmed, S. Abrahim, A. Savardashtaki, G. Gandomani, M. Gandomani, R. Chinnappan, and M.H. Akhtar, Early detection of lung cancer biomarkers through biosensor technology: A review, J. Pharm. Biomed. Anal., 164, 93-103 (2019). https://doi.org/10.1016/j.jpba.2018.10.017
  19. S. Lee, S. Hayati, S. Kim, and H. J. Lee, Determination of protein tyrosine kinase-7 concentration using electrocatalytic reaction and an aptamer-antibody sandwich assay platform, Catal. Today, 359, 76-82 (2021). https://doi.org/10.1016/j.cattod.2019.05.029
  20. M. Chen, D. Wu, S. Tu, C. Yang, D. Chen, and Y. Xu, A novel biosensor for the ultrasensitive detection of the lncRNA biomarker MALAT1 in non-small cell lung cancer, Sci. Rep., 11, 3666 (2021). https://doi.org/10.1038/s41598-021-83244-7
  21. W. C. Park, H. R. Kim, D. B. Kang, J. S. Ryu, K. H. Choi, G. O. Lee, K. J. Yun, K. Y. Kim, R. Park, K. H. Yoon, J. H. Cho, Y. J. Lee, S. C. Chae, M. C. Park, and D. S. Park, Comparative expression patterns and diagnostic efficacies of SR splicing factors and HNRNPA1 in gastric and colorectal cancer, BMC Cancer, 16, 358 (2016). https://doi.org/10.1186/s12885-016-2387-x
  22. K. Otsuka, Y. Yamamoto, and T. Ochiya, Regulatory role of resveratrol, a microRNA-controlling compound, in HNRNPA1 expression, which is associated with poor prognosis in breast cancer, Oncotarget, 9, 24718-24730 (2018). https://doi.org/10.18632/oncotarget.25339
  23. Z. J. Zhou, Z. Dai, S.L. Zhou, X.T. Fu, Y.M. Zhao, Y.H. Shi, J. Zhou, and J. Fan, Overexpression of HnRNP A1 promotes tumor invasion through regulating CD44v6 and indicates poor prognosis for hepatocellular carcinoma, Int. J. Cancer, 132, 1080-1089 (2013). https://doi.org/10.1002/ijc.27742
  24. S.H. Lee, Y.E. Park, J.E. Lee, and H.J. Lee, A surface plasmon resonance biosensor in conjunction with a DNA aptamer-antibody bioreceptor pair for heterogeneous nuclear ribonucleoprotein A1 concentrations in colorectal cancer plasma solutions, Biosens. Bioelectron., 154, 112065 (2020). https://doi.org/10.1016/j.bios.2020.112065
  25. R. Guo, Y. Li, J. Ning, D. Sun, L. Lin, and X. Liu, HnRNP A1/A2 and SF2/ASF regulate alternative splicing of interferon regulatory factor-3 and affect immunomodulatory functions in human non-small cell lung cancer cells, PloS one, 8, e62729 (2013). https://doi.org/10.1371/journal.pone.0062729
  26. X. Liu, Y. Zhou, Y. Lou, and H. Zhong, Knockdown of HNRNPA1 inhibits lung adenocarcinoma cell proliferation through cell cycle arrest at G0/G1 phase, Gene, 576, 791-797 (2016). https://doi.org/10.1016/j.gene.2015.11.009
  27. G. Zhu, and H. J. Lee, Electrochemical sandwich-type biosensors for alpha-1 antitrypsin with carbon nanotubes and alkaline phosphatase labeled antibody-silver nanoparticles, Biosens. Bioelectron., 89, 959-963 (2017). https://doi.org/10.1016/j.bios.2016.09.080
  28. H. C. Chiang, Y. Wang, Q. Zhang, and K. Levon, Optimization of the electrodeposition of gold nanoparticles for the application of highly sensitive, label-free biosensor, Biosensors, 9, 50 (2019). https://doi.org/10.3390/bios9020050
  29. F. S. Diba, S. Kim, and H. J. Lee, Amperometric bioaffinity sensing platform for avian influenza virus proteins with aptamer modified gold nanoparticles on carbon chips, Biosens. Bioelectron., 72, 355-361 (2015). https://doi.org/10.1016/j.bios.2015.05.020
  30. O. de Oliveira Jr, L. Ferreira, G. Marystela, F. de Lima Leite, and A.L. Da Roz, Nanoscience and its Applications, William Andrew, (2016).
  31. M. Leeman, J. Choi, S. Hansson, M. U. Storm, and L. Nilsson, Proteins and antibodies in serum, plasma, and whole blood-size characterization using asymmetrical flow field-flow fractionation (AF4), Anal. Bioanal. Chem., 410, 4867-4873 (2018). https://doi.org/10.1007/s00216-018-1127-2
  32. Y.-L. Ma, J.-Y. Peng, P. Zhang, L. Huang, W.-J. Liu, T.-Y. Shen, H.-Q. Chen, Y.-K. Zhou, M. Zhang, and Z.-X. Chu, Heterogeneous nuclear ribonucleoprotein A1 is identified as a potential biomarker for colorectal cancer based on differential proteomics technology, J. Proteome Res., 8, 4525-4535 (2009). https://doi.org/10.1021/pr900365e