• Title/Summary/Keyword: 일반아스팔트혼합물

Search Result 68, Processing Time 0.025 seconds

Statistical Analysis for Improving Durability of Porous Asphalt Mixtures (다공성 아스팔트혼합물의 내구성 향상을 위한 통계적 분석의 활용)

  • Yoo, In-Kyoon;Lee, Su-Hyung;Han, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.283-290
    • /
    • 2020
  • Porous asphalt pavement is used widely in advanced countries to reduce traffic accidents and noise. On the other hand, it is not applied widely in Korea due to concerns about its durability. This study aims to find a statistical method to improve the durability of porous asphalt pavement. A Cantabro test was selected to test the durability. The Cantabro test was performed on an asphalt mixture made of a binder and aggregate. This test was repeated three times for each of the four groups to obtain the Cantabro loss rate. The average values of each of the four groups satisfied all the reference values. In addition, through an analysis of variance (ANOVA), it was possible to quantitatively classify test groups with differences in durability, thereby finding problems and improving the durability. Furthermore, the Pay Factor method can lead to voluntary improvements in quality, and the Pay factor can be calculated through statistical analysis of limited data. Through the Pay factor, it is possible to induce definite quality improvement of the contractor and continuously improve the durability of the porous asphalt mixture by evaluating the adequacy of the quality standard.

Evaluation of the Mechanical Characteristics of the Large Stone Asphalt Mixtures (대입경 혼합물의 역학적 특성 평가)

  • Park, Tae-Sun;Kim, Ju-Won;Kim, Yong-Ju
    • International Journal of Highway Engineering
    • /
    • v.2 no.2
    • /
    • pp.129-138
    • /
    • 2000
  • This study presents the mechanical characteristics, such as the permanent deformation and the crack, of the large stone asphalt mixtures. The large stone mixture was studied by Kandhal at NCAT(National Center for Asphalt Technology) in 1989. Japan and Arabian countries adopted the large stone mixture for the pavement construction. The experience and the study results showed that the interlocking of the aggregate system of the large stone mixtures is stable and less dependent on the binder characteristics in high temperature. These properties are known as the rutting resistant parameters. However, the mechanical test results should be supported to prove the benefits of the large stone mixtures. The creep test, resilient modulus tests on three different temperature, wheel tracking test and ravelling tests were conducted to evaluate the performance of the large stone mixtures in this study. The test results were compared with the conventional mixtures and modified asphalt concrete mixtures. The large stone mixtures showed better rutting resistance performance.

  • PDF

ViscoElastic Continuum Damage (VECD) Finite Element (FE) Analysis on Asphalt Pavements (아스팔트 콘크리트 포장의 선형 점탄성 유한요소해석)

  • Seo, Youngguk;Bak, Chul-Min;Kim, Y. Richard;Im, Jeong-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.809-817
    • /
    • 2008
  • This paper deals with the development of ViscoElastic Continuum Damage Finite Element Program (VECD-FEP++) and its verification with the results from both field and laboratory accelerated pavement tests. Damage characteristics of asphalt concrete mixture have been defined by Schapery's work potential theory, and uniaxial constant crosshead rate tests were carried out to be used for damage model implementation. VECD-FEP++ predictions were compared with strain responses (longitudinal and transverse strains) under moving wheel loads running at different constant speeds. To this end, an asphalt pavement section (A5) of Korea Expressway Corporation Test Road (KECTR) instrumented with strain gauges were loaded with a dump truck. Also, a series of accelerated pavement fatigue tests have been conducted at pavement sections surfaced with four asphalt concrete mixtures (Dense-graded, SBS, Terpolymer, CR-TB). Planar strain responses were in good agreement with field measurements at base layers, whereas strains at both surface and intermediate layers were found different from simulation results due to the complexity of tire-road contact pressures. Finally, fatigue characteristics of four asphalt mixtures were reasonably described with VECD-FEP++.

Development of Long-Life Asphalt Pavements Method Using High Modulus Asphalt Mixes (고강성 기층재를 적용한 장수명 아스팔트포장 공법 개발)

  • Lee Jung-Hun;Lee Hyun-Jong
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.49-61
    • /
    • 2006
  • This study suggests long-life asphalt pavement method which can save maintenance cost by increasing the design and performance period of pavements. The high modulus asphalt binder developed and then various physical tests are performed. Laboratory performance tests and accelerated pavement test are conducted for the high modulus and conventional mixtures. The test results show that dynamic modulus values of high modulus mixtures are higher than those of the conventional mixtures, The high modulus mixtures yield better fatigue, rutting and moisture damage performance than conventional mixtures. Structural analysis is performed and a database is built up for long life asphalt pavement design. Pavement response model is developed through a multiple regression analysis program, SPSS using the database. A design software for the long life pavements is developed based on the pavement response model and laboratory and field performance tests results. In addition, optimum pavement sections and materials are suggested. The suggested AC thickness of long life asphalt pavement is 29cm. A Life cycle cost analysis(LCCA) is conducted to check the economical efficiency of the long life pavement section. The LCCA result shows that initial construction costs of long life and conventional pavements are almost equal, but long life pavement is more profitable in terms of the LCCA.

  • PDF

Performance of Geogrids for Retarding Reflection Crack of Asphalt Overlay Pavement (아스팔트 덧씌우기의 반사균열 지연을 위한 지오그리드의 적용성 연구)

  • Kim, Kwang-Woo;Doh, Young-Soo;Kim, Bun-Chang;Lee, Moon-Sup
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.1-12
    • /
    • 2005
  • This study was conducted to evaluate effect of geogrid and fabric, which are used underneath the overlaid asphalt pavement for retarding reflection cracking by simulated laboratory test. In this study, an interlayer at the interface between old concrete pavement surface and overlaid asphalt mixture, and polymer-modifier were used as an effort of retarding reflection crack initiation and for strengthening mixture. Five products were used in preparation of asphalt concrete beam specimen which was tack coated on top of jointed concrete block. Simulated Mode I and II fracture test were conducted under wheel loading and results were compared among those products. From the test results, several material and reinforcement combinations were observed to have a significant retardation effect against reflection cracking. The most effectively strengthened pavement against reflection cracking was found to be the LDPE-modifier asphalt mixture with a grid reinforcement at the bottom.

  • PDF

Study on the Performance Evaluation of Colored Asphalt Hot Mixtures through the Usage of Grain-typed Color Additive (알갱이 형태의 유색첨가제를 이용한 칼라 아스팔트 혼합물의 공용성 평가 연구)

  • Lee, Sang-Yum;Ahn, Yong-Ju;Mun, Sung-Ho;Kim, Yeong-Min
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.117-122
    • /
    • 2011
  • Asphalt concrete pavement can be widely seen on urban streets, highways, parking lots, and bike trails. Asphalt concrete pavement is relatively temperature sensitive materials due to the viscoelastic behavior, which can be defined as flexible performance in summer and rigid performance in winter. In terms of maintenance, it can be fixed quite easily if damaged. In addition, asphalt concrete pavement is generally found to be black and grey in color. However, several colors can be adopted to change the appearance of plain old boring, black and grey. Generally, there are two types of color systems in hot mix asphalt concrete materials. One system uses colored cementitious material that is applied to pavement surface through coating the surface of the asphalt pavement. The major disadvantage to this system requires a careful skill set to be used on the construction site in order to prevent taking off the cementitious material. The other coloring system colors the asphalt hot mixtures through using color additives. The main advantage to this system is that the asphalt pavement layer is colored using the same techniques that are already used in paving. The disadvantage is that the colors are limited to mainly reds and browns. In this study, a suggested color additive was evaluated, based on rutting, moisture sensitivity, and fatigue cracking performance.

Performance Evaluation of Asphalt Concrete Pavements at Korea Expressway Corporation Test Road (시험도로 아스팔트 포장의 공용성 변화 분석)

  • Seo, Youngguk;Kwon, Soon-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1D
    • /
    • pp.35-43
    • /
    • 2008
  • This paper mainly deals with the performance evaluation of 33 asphalt sections of Korea Expressway Corporation Test Road (KECTR) during the past four years. Since the construction of the KECTR in December 2002, key performance indicators of asphalt pavements have been collected five times with an Automatic Road Analyzer (ARAN), and have been analyzed for permanent deformation, surface distress, and road roughness. Linear viscoelastic characteristics of four dense graded HMAs used in KECTR were investigated with a series of complex modulus test. The effect of air void in HMAs on dynamic modulus was investigate at two air void contents for a surface course HMA (19 mm Nominal Maximum Size of Aggregate). Layer densification due to traffic was estimated from air void contents of field cored samples, and was correlated with pavement distresses and performances. One of findings of this study was that both permanent deformation and cracking were suspectible to pavement temperatures, rather than traffic. However, it was found that road roughness was mostly affected by traffic loading.

Characteristics of Asphalt Concrete using Waste Foundry Sand (주물고사 첨가 아스팔트 콘크리트의 특성에 관한 연구)

  • Kim, Kwang-Woo;Ko, Dong-Hyuk;Choi, Dong-Chon;Kim, Sung-Won;Kim, Joong-Yul
    • International Journal of Highway Engineering
    • /
    • v.3 no.4 s.10
    • /
    • pp.105-116
    • /
    • 2001
  • This study was performed to evaluate the characteristics of waste foundry sand (WFS) and the asphalt mixture made of a foundry waste sand. To estimate the applicability of WFS, chemical and physical properties were measured by XRF(X-ray fluorescent), and SEM(Scanning electronic microfilm). To improve the stripping resistance of WFS asphalt mixture, anti-stripping agents (a hydrated lime and a liquid anti-stripping agent) were used. To improve tensile properties and durability of WFS asphalt concrete mixture, LDPE(low-density polyethylene) was used as an asphalt modifier Marshall mix design, indirect tensile strength, tensile strength ratio(TSR) after freezing and thawing, moisture susceptibility and wheel tracking tests were carried out to evaluate performance of WFS asphalt concrete. Comparing with conventional asphalt concrete, WFS asphalt concretes showed similar or the better qualify in mechanical properties, and satisfied all specification limits. Therefore, it Is concluded that waste foundry sand can be recycled as an asphalt pavement material.

  • PDF

Fundamental Comparison of Moduli Values in Asphalt Concrete Mixture due to Various Sinusoidal Loadings (다양한 Sinusoidal 하중을 받는 아스팔트콘크리트 혼합물의 Moduli 값에 대한 비교연구)

  • Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.39-48
    • /
    • 2006
  • A laboratory investigation was performed to estimate the moduli values of asphalt concrete mixture due to various sinusoidal loadings in compression and tension. Total five modes of loading were used under five testing temperatures of 32, 50, 68, 86, and $104^{\circ}F$ (0, 10, 20, 30, and $40^{\circ}C$); repeated compressive haversine loading with rest period, repeated tensile haversine loading with rest period, cyclic compressive loading, cyclic tensile loading, and alternate tensile-compressive loadings. The test results showed that, due to the repeated haversine loading with rest period, asphalt concrete demonstrated similar moduli in tension and compression at low temperatures,(0 and $10^{\circ}C$) while those moduli were different at high temperatures (20, 30, and $40^{\circ}C$). At high temperatures the compressive moduli were always higher than the tensile moduli. The uniaxial tensile moduli were higher than indirect tensile moduli at low temperatures. However, those moduli were similar at high temperatures. In uniaxial cyclic tension, compression, and alternate tension-compression tests, compressive moduli were higher than tensile and alternate tensile-compressive moduli throughout the temperatures. Generally, the moduli from the repeated haversine loading with rest period were always lower than those from the cyclic sinusoidal loading. The difference in moduli from the repeated haversine loading with rest period and cyclic sinusoidal loading becomes more significant as the temperature decreases.

Thermo-physical Properties of the Asphalt Pavement by Solar Energy (태양열 에너지에 의한 아스팔트 포장의 열전달 특성)

  • Lee, Kwan-Ho;Kim, Seong-Kyum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.717-724
    • /
    • 2020
  • In general, the factors affecting the heat transfer of asphalt pavement are divided into weather factors and pavement materials. Among them, material factors include the thermophysical and surface properties. An experiment was conducted on the thermal-physical factors of asphalt, which are the basis for the pavement failure model. The thermal conductivity, specific heat capacity, thermal diffusivity, and thermal emissivity were evaluated as the thermo-physical properties of asphalt. The specimens (WC-2 & PA-13) used in the experiment were compacted with a Gyratory Compactor. The experimental results of WC-2 and PA-13 showed a thermal conductivity of 1.18W/m·K and 0.9W/m·K, specific heat capacity of 970.8J/kg·K and 960.1J/kg·K, thermal emissivity of 0.9 and 0.91, and thermal diffusivity of 5.15㎡/s and 4.66㎡/s, respectively. Experiments on the heat transfer characteristics (thermo-physical properties) of asphalt pavement that can be used for thermal failure modeling of asphalt were conducted.