• Title/Summary/Keyword: 인장강도감소

Search Result 971, Processing Time 0.031 seconds

The Effects of Zr Addigion and Isothermal Aging on the Elevated Temperature Tensile Properties of the Mechanically alloyed AI-Ti Alloys (기계적합금화한 AI-Ti합금의 고온인장특성에 미치는 Zr의 첨가와 등온열처리의 영향)

  • Kim, Yong-Deok;Won, Hyeong-Min;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.6 no.11
    • /
    • pp.1136-1145
    • /
    • 1996
  • Ai-8wt.5(Ti+Zr)합금을 기계적합금화와 열간압출로 제조하여 Ti에 대한 Zr 첨가비와 등온열처리가 고온인장강도 및 변형거동에 미치는 영향에 대하여 조사하였다. Ti에 대한 Zr 첨가량의 비가 증가함에 따라 열간압출 시편의 상온 및 고온강도가 증가하였고, 40$0^{\circ}C$ 및 51$0^{\circ}C$에서 등온열처리에 따른 강도의 감소도 작게 나타났다. 이는 Zr 첨가량이 증가함에 따라 AI 기지와 AI3Ti에 비해 작은 격자간불일치도를 갖는 AI3(Ti+Zr)금속간화합물이 생성되고 고온열처리에 따른 조대화가 억제되었기 때문으로 판단되었다. 합금의 연성은 Zr 첨가량과 등온열처리에 관계없이 10% 이하로 낮게 나타났으며 인장 시험 온도가 고온일수록 취성파괴인 입계파괴가 지배적으로 일어났다. AI-Ti-Zr 합금의 변형에 필요한 활성화에너지는 순수한 AI 기지의 자기확산에 필요한 활성화에너지 142KJ/mol에 비해 573-783K 온도범위에서 1.5-1.8배 높은 값을 보였으며, Ti에 대한 Zr의 첨가량의 비가 증가할수록 보다 높은 값을 나타내었다.

  • PDF

Fatigue Strength of Tensile Specimen with Butt Welded Joints (인장시험체 맞대기 용접부의 피로강도)

  • Jo, Jae-Byung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.4 s.15
    • /
    • pp.1-6
    • /
    • 2004
  • Fatigue tests were carried out for butt welded joints with SM520-TMC steel plate with thickness between 20mm and 80mm. The test results were analysed statistically and the effect of plate thickness on the fatigue strength investigated. The fatigue strengths based on nominal stress range satisfy the requirement of the standards. Due to misalignment of the specimens, the measured stresses are higher than the nominal stresses especially for 20mm thick plates. If fatigue strengths are evaluated based on the measured stresses, then the fatigue strengths are greater than those based on nominal stresses. The results show that the thickness effect is similar to the formula proposed by Gurney.

Experimental Study on the Properties of Strength of the No-Fines Concrete (No-Fines Concrete의 강도특성(强度特性)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Kim, Seong Wan;Sung, Chan Yong;Min, Jeong Kie
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.2
    • /
    • pp.373-383
    • /
    • 1987
  • No-fines concrete is concrete from which the fine aggregate fraction has been omitted. The concrete so formed, consisting only of coarse aggregate, cement, and water, has large voids uniformly distributed through its mass. This study was performed to obtain the basic data which can be applied to the use of no-fines concrete. The data was based on the properties of no-fines concrete depending upon various mixing ratios. The results obtained were summarized as follows. 1. Test result of the consistency, suitable water-cement ratio was increased with the increasing of mixing ratio. 2. At the suitable water-cement ratio, the highest strengths were showed. But it gradually was decreased with the increasing of mixing ratio and strengths are considerably lower than that of conventional portland cement concrete. 3. The relations between compressive and tensile strength were highly singnificant as a straight line shaped. The strength ratio was decreased with the increasing of mixing ratio and considerably lower than of conventional portland cement concrete. 4. Bulk density was decreased with the increasing of the mixing ratio, and was similar to that of the conventional portland cement concrete at mixing ratio 1:4. 5. The relations between strength and bulk density were highly significant as a straight line shaped. The decreasing ratio of strengths was higher than that of bulk density.

  • PDF

Numerical Modeling of Shear Heating in 2D Elastoplastic Extensional Lithosphere using COMSOL Multiphysics® (콤솔 멀티피직스를 이용한 2차원 탄소성 인장 암석권 모형에서 발생하는 전단열에 관한 수치 모사 연구)

  • Jo, Taehwan;So, Byung-Dal
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • In the development of geodynamic structures such as subduction and rift zones, a weakening mechanism is essential for localized weak zone formation in the lithosphere. Shear heating, a weakening mechanism, generates short-wavelength temperature elevation in the lithosphere; the increased temperature can reduce lithospheric strength and promote its breakup. A two-dimensional elastoplastic extensional basin model was used to conduct benchmarking based on previous numerical simulation studies to quantitatively analyze shear heating. The amount of shear heating was investigated by controlling the yield strength, extensional velocity, and strain- and temperature-dependent weakening. In the absence of the weakening mechanism, the higher yield strength and extensional velocity led to more vigorous shear heating. The reference model with a 100-MPa yield strength and 2-cm/year extension showed a temperature increase of ~ 50 K when the bulk extension was 20 km (i.e., 0.025 strain). However, in the yield-strength weakening mechanism, depending on the plastic strain and temperature, more efficient weakening induced stronger shear heating, which indicates positive feedback between the weakening mechanism and the shear heating. The rate of shear heating rapidly increased at the initial stage of deformation, and the rate decreased by 80% as the lithosphere weakened. This suggests that shear heating with the weakening mechanism can significantly influence the strength of relatively undamaged lithosphere.

Experimental Studies on the Properties of Mortars by Foaming Agent (기포제(起泡劑)를 사용(使用)한 모르터의 제성질(諸性質)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Ahn, Young Durg;Kang, Sin Up
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.2
    • /
    • pp.292-308
    • /
    • 1985
  • This study was performed to obtain the basic data which can be applied to the use of foamed mortars using foaming agent of prefoamed type. The data was based on the properties of foamed mortars depending upon various mixing ratios of cement to fine aggregates, flow values and foam-cement ratio to compare those of cement mortar. The results obtained were summarized as follow; 1. At the mixing ratio of 1:0 and the foam-cement ratio of 6.00%, the increasing rate of water-cement ratio was 25% by flow $200{\pm}5mm$, 28% by flow $240{\pm}5mm$ and 32% by flow $280{\pm}5mm$. But it decreased as the mixing ratio gets poorer. The result showed that water amount increased because of the high viscosity caused by the increase of foam-cement ratio. The decrease of water-cement ratio was the greatest when the foam-cement ratio was 1.50%. 2. Absolute aridity bulk density of foamed mortars decreased with the increase of foam-cement ratio and the decrease of flow values. 3. Generally, compressive, tensile and bending strenghs of foamed mortars decreased with the decrease of flow values and the increase of foam-cement ratio. 4. The compressive strength was in proportion to tensile strength. It was estimated that the compressive strength was 8.8 times of tensile strength. The compressive strength was in proportion to bending strength. It was estimated that the compressive strength was 4.0 times of bending strength. The bending strength was in proportion to tensile strength. It was estimated that the bending strength was 2.1 times of tensile strength. 5. At the mixing ratio of 1:1 the lowest absorption rates were showed by foamed mortars, respectively. It was significantly higher at the early stage of immersed water.

  • PDF

A Study on Synthesis and Properties of Acrylic Rubber (아크릴 고무의 합성과 물성에 대한 연구)

  • Cho, Ur-Ryong;Lee, Ki-Mun
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.308-314
    • /
    • 2009
  • The acrylic rubber was synthesized by emulsion polymerization using n-butyl acrylate, n-butyl methacrylate, acrylonitrile, glycidylmethacrylate, and allyl methacrylate. When the contents of acrylonitrile were increased at fixed amount of crosslinking monomers, the Tg of polymers was increased with the contents of acrylonitrile, Mooney viscosity, hardness, and tensile strength also were increased. But the elongation was decreased due to the reduction of chain flexibility. The addition of the monomer for crosslinking, glycidylmethacrylate whose Tg is $56^{\circ}C$ resulted in the increased Tg of the polymer, and increased Mooney viscosity, hardness, and tensile strength, but the elongation at break was decreased with the glycidylmethacrylate contents. It was shown that this phenominon was attributed to the increment of crosslinking density by glycidylmethacrylate through the measurement of rheometer.

Surface Resistance and Tensile Strength of Polyester Resin by Anti-static Agents (대전방지제에 의한 폴리에스테르 수지의 표면저항과 인장강도 특성)

  • Lee, Jeon-Kyu;Choi, Hwan-Oh;Kim, Eun-Bong;Kim, Si-Young;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.638-642
    • /
    • 2010
  • In order to develope anti - static polyester resin which may be employed to dangerous circumstance with high organic vapor content, the effect of anti - static agents on the surface resistance and tensile strength of polyester resin were studied. Three organic anti - static agents and a conductive carbon black were adapted and used separately and together. The effects of anti - static agents, their contents, and synergic effect of anti - static agents were experimentally examined. Surface resistance and tensile strength of the polyester resin were decreased with the content of anti - static agents, and polyester resin with low surface resistance and relatively high tensile strength could be prepared by synergic effect of organic anti - static agent and carbon black.

Characteristics of Asphalt Concrete Utilizing Coal Ash Based Filler (석탄회 기반 채움재를 활용한 아스팔트 콘크리트의 공학적 특성)

  • Kim, Young-Wook;Park, Keun-Bae;Woo, Yang-Yi;Moon, Bo-Kyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.305-312
    • /
    • 2017
  • This paper presents a laboratory investigation into the effects of fillers using industrial by-product such as coal ash, IGCC slag on properties of hot-mixed asphalt concrete variation with filler content. For comparison, existing mixture with lime and dust have also been considered. Marshall and flow test has been considered for the purpose of mix design as well as evaluation of mixture. Other performance tests such as indirect tensile strength test, tensile strength ratio(moisture susceptibility), dynamic stability have also been carried out variation with filler content. It is observed that the mixes with industrial by-product exhibit conform with quality standard. Therefore, it has been recommended to utilize industrial by-product based on fly ash wherever available, not only reducing the produce cost but also partly solve the industrial by-product utilization and disposal problem.

Preparation of Urethane Nanocomposites with Inorganic Nano Fillers and Their Physical Properties (무기계 나노분말 충전 폴리우레탄 나노복합재료의 제조 및 물성)

  • Yang Yun-Kyu;Hwang Taek-Sung;Hwang Eui-Hwan
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.129-134
    • /
    • 2006
  • Nanocomposites of polyurethane were prepared from inorganic nano particles, $Na^+-montmorillonite$ (MMT), silica, $CaCO_3$, and surface modified MMT and their properties were investigated. It was shown that the molecular weight and polydispenity of nanocomposites of polyurethane were 20000 to 28000 and 1.0 to 2.0, respectively. d-Spacing for nanocomposites of MMT were increased than that of pure MMT. Initial degradation temperature of nanocomposites were 250 to $280^{\circ}C$. And also, the range of weight loss for nanocomposites were decreased and the end of thermal degradation was observed at higher temperatures about $50^{\circ}C$. The elongation at break for $CaCO_3$ filled nanocomposites were the highest among the nanocomposites used in this study. studied. It was found that the tensile strength increased with increasing the filler contents while the silica nanocomposite exhibited the lowest increase and the $CaCO_3$ nanocomposite the highest.

Mechanical Characteristics of Stainless Steel TP 304, TP 316 under Low Temperature Environment (저온 기계 재료용 TP 304, TP 316 소재의 저온거동 특성 평가)

  • Cho, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.125-130
    • /
    • 2017
  • Automotive materials and plant modules need to be prepared for freezing parts to operate in extreme areas such as Eastern Europe, Russia, and Canada. However, the only thing that has been done for ultra-qualifying materials for extremely low operating materials is that only the effects at low temperatures are conducted at room temperature, and the effects at low temperatures are only identified at low speeds. Therefore, this study examined the low-temperature characteristics of materials by conducting comparative tests on the mechanical properties of the room at the temperature and temperature of TP304 and TP316 materials, which are the most common materials.