Browse > Article
http://dx.doi.org/10.7582/GGE.2020.23.1.001

Numerical Modeling of Shear Heating in 2D Elastoplastic Extensional Lithosphere using COMSOL Multiphysics®  

Jo, Taehwan (Department of Geophysics, Kangwon National University)
So, Byung-Dal (Department of Geophysics, Kangwon National University)
Publication Information
Geophysics and Geophysical Exploration / v.23, no.1, 2020 , pp. 1-12 More about this Journal
Abstract
In the development of geodynamic structures such as subduction and rift zones, a weakening mechanism is essential for localized weak zone formation in the lithosphere. Shear heating, a weakening mechanism, generates short-wavelength temperature elevation in the lithosphere; the increased temperature can reduce lithospheric strength and promote its breakup. A two-dimensional elastoplastic extensional basin model was used to conduct benchmarking based on previous numerical simulation studies to quantitatively analyze shear heating. The amount of shear heating was investigated by controlling the yield strength, extensional velocity, and strain- and temperature-dependent weakening. In the absence of the weakening mechanism, the higher yield strength and extensional velocity led to more vigorous shear heating. The reference model with a 100-MPa yield strength and 2-cm/year extension showed a temperature increase of ~ 50 K when the bulk extension was 20 km (i.e., 0.025 strain). However, in the yield-strength weakening mechanism, depending on the plastic strain and temperature, more efficient weakening induced stronger shear heating, which indicates positive feedback between the weakening mechanism and the shear heating. The rate of shear heating rapidly increased at the initial stage of deformation, and the rate decreased by 80% as the lithosphere weakened. This suggests that shear heating with the weakening mechanism can significantly influence the strength of relatively undamaged lithosphere.
Keywords
shear heating; elastoplasticity; comsol multiphysics; yield strength; strain-softening;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bercovici, D., Tackley, P., and Ricard, Y., 2015, 7.07-the generation of plate tectonics from mantle dynamics, Treatise on Geophysics. Elsevier, Oxford, 271-318.
2 Braeck, S., and Podladchikov, Y. Y., 2007, Spontaneous thermal runaway as an ultimate failure mechanism of materials, Phys. Rev. Lett., 98(9), 095504.   DOI
3 Braun, J., Chery, J., Poliakov, A., Mainprice, D., Vauchez, A., Tomassi, A., and Daignieres, M., 1999, A simple parameterization of strain localization in the ductile regime due to grain size reduction: A case study for olivine, J. Geophys. Res.-Solid Earth, 104(B11), 25167-25181.   DOI
4 Brun, J. P., and Cobbold, P. R., 1980, Strain heating and thermal softening in continental shear zones: A review, J. Struct. Geol., 2(1-2), 149-158.   DOI
5 Buck, W. R., and Poliakov, A. N., 1998, Abyssal hills formed by stretching oceanic lithosphere, Nature, 392(6673), 272-275.   DOI
6 Buiter, S. J., Pfiffner, O. A., and Beaumont, C., 2009, Inversion of extensional sedimentary basins: A numerical evaluation of the localisation of shortening, Earth Planet. Sci. Lett., 288(3-4), 492-504.   DOI
7 Chenin, P., Schmalholz, S. M., Manatschal, G., and Karner, G. D., 2018, Necking of the Lithosphere: A Reappraisal of Basic Concepts With Thermo‐Mechanical Numerical Modeling, J. Geophys. Res.-Solid Earth, 123(6), 5279-5299.   DOI
8 Choi, E., Buck, W. R., Lavier, L. L., and Petersen, K. D., 2013, Using core complex geometry to constrain fault strength, Geophys. Res. Lett., 40(15), 3863-3867.   DOI
9 Do, S. H., and So, B. D., 2019, Finite element modeling for 2D viscoelastic buckling formation with mechanical strength of mantle and lithosphere, J. Geol. Soc. Korea, 55(3), 315-332 (in Korean with English abstract)   DOI
10 Duretz, T., Räss, L., Podladchikov, Y. Y., and Schmalholz, S. M., 2019, Resolving thermomechanical coupling in two and three dimensions: Spontaneous strain localization owing to shear heating, Geophys. J. Int., 216(1), 365-379.   DOI
11 Elshaafi, A., and Gudmundsson, A., 2016, Volcano-tectonics of the Al haruj volcanic province, Central Libya, J. Volcanol. Geotherm. Res., 325, 189-202.   DOI
12 Foley, B. J., 2018, On the dynamics of coupled grain size evolution and shear heating in lithospheric shear zones, Phys. Earth Planet. Inter., 283, 7-25.   DOI
13 Gerya, T. V., and Meilick, F. I., 2011, Geodynamic regimes of subduction under an active margin: Effects of rheological weakening by fluids and melts, J. Metamorph. Geol., 29(1), 7-31.   DOI
14 Gerya, T. V., Stöckhert, B., and Perchuk, A. L., 2002, Exhumation of high‐pressure metamorphic rocks in a subduction channel: A numerical simulation, Tectonics, 21(6), 6-1.   DOI
15 Guillou-Frottier, L., Carre, C., Bourgine, B., Bouchot, V., and Genter, A., 2013, Structure of hydrothermal convection in the Upper Rhine Graben as inferred from corrected temperature data and basin-scale numerical models, J. Volcanol. Geotherm. Res., 256, 29-49.   DOI
16 Harrison, M. T., Grove, M., Mckeegan, K. D., Coath, C. D., Lovera, O. M., and Fort, P. L., 1999, Origin and episodic emplacement of the Manaslu intrusive complex, central Himalaya, J. Petrol., 40(1), 3-19.   DOI
17 Huismans, R. S., and Beaumont, C., 2014, Rifted continental margins: The case for depth-dependent extension, Earth Planet. Sci. Lett., 407, 148-162.   DOI
18 Huismans, R. S., Podladchikov, Y. Y., and Cloetingh, S., 2001, Transition from passive to active rifting: Relative importance of asthenospheric doming and passive extension of the lithosphere, J. Geophys. Res.-Solid Earth, 106(B6), 11271-11291.   DOI
19 Kaus, B. J., 2010, Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation, Tectonophysics, 484(1-4), 36-47.   DOI
20 Kameyama, M., Yuen, D. A., and Karato, S. I., 1999, Thermalmechanical effects of low-temperature plasticity (the Peierls mechanism) on the deformation of a viscoelastic shear zone, Earth Planet. Sci. Lett., 168(1-2), 159-172.   DOI
21 Kaus, B. J., and Podladchikov, Y. Y., 2006, Initiation of localized shear zones in viscoelastoplastic rocks, J. Geophys. Res.-Solid Earth, 111, B04412.
22 Kelemen, P. B., and Hirth, G., 2007, A periodic shear-heating mechanism for intermediate-depth earthquakes in the mantle, Nature, 446(7137), 787-790.   DOI
23 Keum, J. Y., and So, B. D., 2019, A benchmark study on viscoelastic self-consistent free subduction model using COMSOL Multiphysics: in the frame work of 2D Lagrangian finite element method, J. Geol. Soc. Korea, 55(2), 219-236 (in Korean with English abstract)   DOI
24 Kim, Y. G., Lee, S. M., and Matsubayashi, O., 2010, New heat flow measurements in the Ulleung Basin, East Sea (Sea of Japan): relationship to local BSR depth, and implications for regional heat flow distribution, Geo-Mar. Lett., 30(6), 595-603.   DOI
25 Kobayashi, S., Oh, S. I., and Altan, T., 1989, Metal forming and the finite-element method, Vol. IV, Oxford University Press on Demand, 54-66.
26 Lundin, E. R., and Dore, A. G., 2011, Hyperextension, serpentinization, and weakening: A new paradigm for rifted margin compressional deformation, Geology, 39(4), 347-350.   DOI
27 Lavier, L. L., Buck, W. R., and Poliakov, A. N., 2000, Factors controlling normal fault offset in an ideal brittle layer, J. Geophys. Res.-Solid Earth, 105(B10), 23431-23442.   DOI
28 Lee, C., and King, S. D., 2010, Why are high-Mg# andesites widespread in the western Aleutians? A numerical model approach, Geology, 38(7), 583-586.   DOI
29 Lee, C., and Wada, I., 2017, Clustering of arc volcanoes caused by temperature perturbations in the back-arc mantle, Nat. commun., 8(1), 1-9.   DOI
30 Bellahsen, N., Husson, L., Autin, J., Leroy, S., and d'Acremont, E., 2013, The effect of thermal weakening and buoyancy forces on rift localization: Field evidences from the Gulf of Aden oblique rifting, Tectonophysics, 607, 80-97.   DOI
31 McGuire, J. J., and Beroza, G. C., 2012, A rogue earthquake off Sumatra, Science, 336(6085), 1118-1119.   DOI
32 McKenzie, D. P., 1977, The initiation of trenches: A finite amplitude instability, Island arcs, deep sea trenches and back‐arc basins, 1, 57-61.   DOI
33 McKenzie, D., 1978, Some remarks on the development of sedimentary basins, Earth Planet. Sci. Lett., 40(1), 25-32.   DOI
34 Moresi, L., Quenette, S., Lemiale, V., Meriaux, C., Appelbe, B., and Muhlhaus, H. B., 2007, Computational approaches to studying non-linear dynamics of the crust and mantle, Phys. Earth Planet. Inter., 163(1-4), 69-82.   DOI
35 Mueller, S., and Phillips, R. J., 1991, On the initiation of subduction, J. Geophys. Res.-Solid Earth, 96(B1), 651-665.   DOI
36 Negredo, A., Fernandez, M., Torne, M., and Doglioni, C., 1999, Numerical modeling of simultaneous extension and compression: The Valencia Trough (western Mediterranean), Tectonics, 18(2), 361-374.   DOI
37 Regenauer-Lieb, K., Yuen, D. A., and Branlund, J., 2001, The initiation of subduction: Criticality by addition of water?, Science, 294(5542), 578-580.   DOI
38 Ohuchi, T., Lei, X., Ohfuji, H., Higo, Y., Tange, Y., Sakai, T., Fujino, K., and Irifune, T., 2017, Intermediate-depth earthquakes linked to localized heating in dunite and harzburgite, Nat. Geosci., 10(10), 771-776.   DOI
39 Perez-Gussinye, M., Morgan, J. P., Reston, T. J., and Ranero, C. R., 2006, The rift to drift transition at non-volcanic margins: Insights from numerical modelling, Earth Planet. Sci. Lett., 244(1-2), 458-473.   DOI
40 Prieto, G. A., Florez, M., Barrett, S. A., Beroza, G. C., Pedraza, P., Blanco, J. F., and Poveda, E., 2013, Seismic evidence for thermal runaway during intermediate‐depth earthquake rupture, Geophys. Res. Lett., 40(23), 6064-6068.   DOI
41 Regenauer‐Lieb, K., and Yuen, D. A., 1998, Rapid conversion of elastic energy into plastic shear heating during incipient necking of the lithosphere, Geophys. Res. Lett., 25(14), 2737-2740.   DOI
42 Rice, J. R., 2006, Heating and weakening of faults during earthquake slip, J. Geophys. Res.-Solid Earth, 11, B05311.
43 Ruh, J. B., Kaus, B. J., and Burg, J. P., 2012, Numerical investigation of deformation mechanics in fold‐and‐thrust belts: Influence of rheology of single and multiple decollements, Tectonics, 31, TC3005.
44 Schmeling, H., and Jacoby, W. R., 1982, On modeling the lithosphere in mantle convection with non-linear rheology, J. Geophys., 50(1), 89-100.
45 Sdrolias, M., Roest, W. R., and Muller, R. D., 2004, An expression of Philippine Sea plate rotation: the Parece Vela and Shikoku basins, Tectonophysics, 394(1-2), 69-86.   DOI
46 Tackley, P. J., 2000, The quest for self-consistent generation of plate tectonics in mantle convection models, Geophysical Monograph-American Geophysical Union, 121, 47-72.
47 Sibuet, J. C., Hsu, S. K., Le Pichon, X., Le Formal, J. P., Reed, D., Moore, G., and Liu, C. S., 2002, East Asia plate tectonics since 15 Ma: constraints from the Taiwan region, Tectonophysics, 344(1-2), 103-134.   DOI
48 So, B. D., and Yuen, D. A., 2014, Stationary points in activation energy for heat dissipated with a power law temperature‐dependent viscoelastoplastic rheology, Geophys. Res. Lett., 41(14), 4953-4960.   DOI
49 Stern, R. J., 2004, Subduction initiation: spontaneous and induced, Earth Planet. Sci. Lett., 226(3-4), 275-292.   DOI
50 Thielmann, M., and Kaus, B. J., 2012, Shear heating induced lithospheric-scale localization: Does it result in subduction?, Earth Planet. Sci. Lett., 359, 1-13.   DOI
51 van den Berg, A. P., and Yuen, D. A., 1997, The role of shear heating in lubricating mantle flow, Earth Planet. Sci. Lett., 151(1-2), 33-42.   DOI
52 van Wijk, J. W., 2005, Role of weak zone orientation in continental lithosphere extension, Geophys. Res. Lett., 32, L02303.   DOI
53 Vissers, R. L. M., Drury, M. R., Hoogerduijn, E. H., Spiers, C. J., and van der Wal, D., 1995, Mantle shear zones and their effect on lithosphere strength during continental breakup, Tectonophysics, 249(3-4), 155-171.   DOI
54 Yoon, S. H., Sohn, Y. K., and Chough, S. K., 2014, Tectonic, sedimentary, and volcanic evolution of a back-arc basin in the East Sea (Sea of Japan), Mar. Geol., 352, 70-88.   DOI
55 Warren, J. M., and Hirth, G., 2006, Grain size sensitive deformation mechanisms in naturally deformed peridotites, Earth Planet. Sci. Lett., 248(1-2), 438-450.   DOI
56 Willett, S. D., 1999, Rheological dependence of extension in wedge models of convergent orogens, Tectonophysics, 305(4), 419-435.   DOI
57 Wittlinger, G., Tapponnier, P., Poupinet, G., Mei, J., Danian, S., Herquel, G., and Masson, F., 1998, Tomographic evidence for localized lithospheric shear along the Altyn Tagh fault, Science, 282(5386), 74-76.   DOI
58 Yuen, D. A., Fleitout, L., Schubert, G., and Froidevaux, C., 1978, Shear deformation zones along major transform faults and subducting slabs, Geophys. J. Int., 54(1), 93-119.   DOI
59 Zhong, S., and Gurnis, M., 1995, Towards a realistic simulation of plate margins in mantle convection, Geophys. Res. Lett., 22(8), 981-984.   DOI