DOI QR코드

DOI QR Code

Numerical Modeling of Shear Heating in 2D Elastoplastic Extensional Lithosphere using COMSOL Multiphysics®

콤솔 멀티피직스를 이용한 2차원 탄소성 인장 암석권 모형에서 발생하는 전단열에 관한 수치 모사 연구

  • Jo, Taehwan (Department of Geophysics, Kangwon National University) ;
  • So, Byung-Dal (Department of Geophysics, Kangwon National University)
  • 조태환 (강원대학교 지구물리학과) ;
  • 소병달 (강원대학교 지구물리학과)
  • Received : 2019.10.31
  • Accepted : 2020.01.29
  • Published : 2020.02.28

Abstract

In the development of geodynamic structures such as subduction and rift zones, a weakening mechanism is essential for localized weak zone formation in the lithosphere. Shear heating, a weakening mechanism, generates short-wavelength temperature elevation in the lithosphere; the increased temperature can reduce lithospheric strength and promote its breakup. A two-dimensional elastoplastic extensional basin model was used to conduct benchmarking based on previous numerical simulation studies to quantitatively analyze shear heating. The amount of shear heating was investigated by controlling the yield strength, extensional velocity, and strain- and temperature-dependent weakening. In the absence of the weakening mechanism, the higher yield strength and extensional velocity led to more vigorous shear heating. The reference model with a 100-MPa yield strength and 2-cm/year extension showed a temperature increase of ~ 50 K when the bulk extension was 20 km (i.e., 0.025 strain). However, in the yield-strength weakening mechanism, depending on the plastic strain and temperature, more efficient weakening induced stronger shear heating, which indicates positive feedback between the weakening mechanism and the shear heating. The rate of shear heating rapidly increased at the initial stage of deformation, and the rate decreased by 80% as the lithosphere weakened. This suggests that shear heating with the weakening mechanism can significantly influence the strength of relatively undamaged lithosphere.

섭입 및 열개와 같이 대변형을 수반하는 지구동역학적 현상 발생은 암석권의 국지적인 약대의 발달이 필요하다. 이러한 약화 기작 중 하나인 전단열은 암석권의 온도를 국부적으로 높여 강도를 낮추는 역할을 하여 암석권 파괴를 촉진시킬 수 있다. 본 연구에서는 전단열에 대한 정량적인 분석을 위하여 2차원 탄소성 인장 분지 모형을 제작하여 기존 수치 모사 연구를 벤치마크하였다. 암석권의 항복강도, 인장 속도, 변형량- 및 온도-의존성 약화 현상 등을 조절하여 전단열 발생량에 미치는 영향을 분석하였다. 실험 결과, 약화를 고려하지 않은 경우 전단열의 발생량은 암석권의 항복강도 및 인장 속도와 양의 상관관계가 있는 것으로 나타났다. 기준 모형인 항복강도 100 MPa, 인장 속도 2 cm/yr로 설정된 경우, 총 20 km 인장된 시점(0.025의 변형률)에서 ~ 50 K의 온도 상승을 보여주었다. 소성 변형 및 온도에 따른 약화가 포함된 경우에는, 더 효율적인 약화 기작이 더 강한 전단열의 생성으로 이어지는데 이러한 현상은 약화 기작과 전단열 발생 사이에 양성되먹임이 작용함을 지시한다. 또한 변형 초기에 급격한 전단열 발생량을 보여주지만, 변형이 지속되어 암석권의 강도가 약화되면 전단열 발생 속도가 최대 ~ 80% 감소했다. 이는 약화 기작이 포함된 경우 전단열은 비교적 손상되지 않은 상태인 암석권의 강도에 큰 영향을 미침을 시사한다.

Keywords

References

  1. Bellahsen, N., Husson, L., Autin, J., Leroy, S., and d'Acremont, E., 2013, The effect of thermal weakening and buoyancy forces on rift localization: Field evidences from the Gulf of Aden oblique rifting, Tectonophysics, 607, 80-97. https://doi.org/10.1016/j.tecto.2013.05.042
  2. Bercovici, D., Tackley, P., and Ricard, Y., 2015, 7.07-the generation of plate tectonics from mantle dynamics, Treatise on Geophysics. Elsevier, Oxford, 271-318.
  3. Braeck, S., and Podladchikov, Y. Y., 2007, Spontaneous thermal runaway as an ultimate failure mechanism of materials, Phys. Rev. Lett., 98(9), 095504. https://doi.org/10.1103/PhysRevLett.98.095504
  4. Braun, J., Chery, J., Poliakov, A., Mainprice, D., Vauchez, A., Tomassi, A., and Daignieres, M., 1999, A simple parameterization of strain localization in the ductile regime due to grain size reduction: A case study for olivine, J. Geophys. Res.-Solid Earth, 104(B11), 25167-25181. https://doi.org/10.1029/1999JB900214
  5. Brun, J. P., and Cobbold, P. R., 1980, Strain heating and thermal softening in continental shear zones: A review, J. Struct. Geol., 2(1-2), 149-158. https://doi.org/10.1016/0191-8141(80)90045-0
  6. Buck, W. R., and Poliakov, A. N., 1998, Abyssal hills formed by stretching oceanic lithosphere, Nature, 392(6673), 272-275. https://doi.org/10.1038/32636
  7. Buiter, S. J., Pfiffner, O. A., and Beaumont, C., 2009, Inversion of extensional sedimentary basins: A numerical evaluation of the localisation of shortening, Earth Planet. Sci. Lett., 288(3-4), 492-504. https://doi.org/10.1016/j.epsl.2009.10.011
  8. Chenin, P., Schmalholz, S. M., Manatschal, G., and Karner, G. D., 2018, Necking of the Lithosphere: A Reappraisal of Basic Concepts With Thermo‐Mechanical Numerical Modeling, J. Geophys. Res.-Solid Earth, 123(6), 5279-5299. https://doi.org/10.1029/2017JB014155
  9. Choi, E., Buck, W. R., Lavier, L. L., and Petersen, K. D., 2013, Using core complex geometry to constrain fault strength, Geophys. Res. Lett., 40(15), 3863-3867. https://doi.org/10.1002/grl.50732
  10. Do, S. H., and So, B. D., 2019, Finite element modeling for 2D viscoelastic buckling formation with mechanical strength of mantle and lithosphere, J. Geol. Soc. Korea, 55(3), 315-332 (in Korean with English abstract) https://doi.org/10.14770/jgsk.2019.55.3.315
  11. Duretz, T., Räss, L., Podladchikov, Y. Y., and Schmalholz, S. M., 2019, Resolving thermomechanical coupling in two and three dimensions: Spontaneous strain localization owing to shear heating, Geophys. J. Int., 216(1), 365-379. https://doi.org/10.1093/gji/ggy434
  12. Elshaafi, A., and Gudmundsson, A., 2016, Volcano-tectonics of the Al haruj volcanic province, Central Libya, J. Volcanol. Geotherm. Res., 325, 189-202. https://doi.org/10.1016/j.jvolgeores.2016.06.025
  13. Foley, B. J., 2018, On the dynamics of coupled grain size evolution and shear heating in lithospheric shear zones, Phys. Earth Planet. Inter., 283, 7-25. https://doi.org/10.1016/j.pepi.2018.07.008
  14. Gerya, T. V., and Meilick, F. I., 2011, Geodynamic regimes of subduction under an active margin: Effects of rheological weakening by fluids and melts, J. Metamorph. Geol., 29(1), 7-31. https://doi.org/10.1111/j.1525-1314.2010.00904.x
  15. Gerya, T. V., Stöckhert, B., and Perchuk, A. L., 2002, Exhumation of high‐pressure metamorphic rocks in a subduction channel: A numerical simulation, Tectonics, 21(6), 6-1. https://doi.org/10.1029/2002TC001406
  16. Guillou-Frottier, L., Carre, C., Bourgine, B., Bouchot, V., and Genter, A., 2013, Structure of hydrothermal convection in the Upper Rhine Graben as inferred from corrected temperature data and basin-scale numerical models, J. Volcanol. Geotherm. Res., 256, 29-49. https://doi.org/10.1016/j.jvolgeores.2013.02.008
  17. Harrison, M. T., Grove, M., Mckeegan, K. D., Coath, C. D., Lovera, O. M., and Fort, P. L., 1999, Origin and episodic emplacement of the Manaslu intrusive complex, central Himalaya, J. Petrol., 40(1), 3-19. https://doi.org/10.1093/petroj/40.1.3
  18. Huismans, R. S., and Beaumont, C., 2014, Rifted continental margins: The case for depth-dependent extension, Earth Planet. Sci. Lett., 407, 148-162. https://doi.org/10.1016/j.epsl.2014.09.032
  19. Huismans, R. S., Podladchikov, Y. Y., and Cloetingh, S., 2001, Transition from passive to active rifting: Relative importance of asthenospheric doming and passive extension of the lithosphere, J. Geophys. Res.-Solid Earth, 106(B6), 11271-11291. https://doi.org/10.1029/2000JB900424
  20. Kameyama, M., Yuen, D. A., and Karato, S. I., 1999, Thermalmechanical effects of low-temperature plasticity (the Peierls mechanism) on the deformation of a viscoelastic shear zone, Earth Planet. Sci. Lett., 168(1-2), 159-172. https://doi.org/10.1016/S0012-821X(99)00040-0
  21. Kaus, B. J., 2010, Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation, Tectonophysics, 484(1-4), 36-47. https://doi.org/10.1016/j.tecto.2009.08.042
  22. Kaus, B. J., and Podladchikov, Y. Y., 2006, Initiation of localized shear zones in viscoelastoplastic rocks, J. Geophys. Res.-Solid Earth, 111, B04412.
  23. Kelemen, P. B., and Hirth, G., 2007, A periodic shear-heating mechanism for intermediate-depth earthquakes in the mantle, Nature, 446(7137), 787-790. https://doi.org/10.1038/nature05717
  24. Keum, J. Y., and So, B. D., 2019, A benchmark study on viscoelastic self-consistent free subduction model using COMSOL Multiphysics: in the frame work of 2D Lagrangian finite element method, J. Geol. Soc. Korea, 55(2), 219-236 (in Korean with English abstract) https://doi.org/10.14770/jgsk.2019.55.2.219
  25. Kim, Y. G., Lee, S. M., and Matsubayashi, O., 2010, New heat flow measurements in the Ulleung Basin, East Sea (Sea of Japan): relationship to local BSR depth, and implications for regional heat flow distribution, Geo-Mar. Lett., 30(6), 595-603. https://doi.org/10.1007/s00367-010-0207-x
  26. Kobayashi, S., Oh, S. I., and Altan, T., 1989, Metal forming and the finite-element method, Vol. IV, Oxford University Press on Demand, 54-66.
  27. Lavier, L. L., Buck, W. R., and Poliakov, A. N., 2000, Factors controlling normal fault offset in an ideal brittle layer, J. Geophys. Res.-Solid Earth, 105(B10), 23431-23442. https://doi.org/10.1029/2000JB900108
  28. Lee, C., and King, S. D., 2010, Why are high-Mg# andesites widespread in the western Aleutians? A numerical model approach, Geology, 38(7), 583-586. https://doi.org/10.1130/G30714.1
  29. Lee, C., and Wada, I., 2017, Clustering of arc volcanoes caused by temperature perturbations in the back-arc mantle, Nat. commun., 8(1), 1-9. https://doi.org/10.1038/s41467-016-0009-6
  30. Lundin, E. R., and Dore, A. G., 2011, Hyperextension, serpentinization, and weakening: A new paradigm for rifted margin compressional deformation, Geology, 39(4), 347-350. https://doi.org/10.1130/G31499.1
  31. McGuire, J. J., and Beroza, G. C., 2012, A rogue earthquake off Sumatra, Science, 336(6085), 1118-1119. https://doi.org/10.1126/science.1223983
  32. McKenzie, D. P., 1977, The initiation of trenches: A finite amplitude instability, Island arcs, deep sea trenches and back‐arc basins, 1, 57-61. https://doi.org/10.1029/ME001p0057
  33. McKenzie, D., 1978, Some remarks on the development of sedimentary basins, Earth Planet. Sci. Lett., 40(1), 25-32. https://doi.org/10.1016/0012-821X(78)90071-7
  34. Moresi, L., Quenette, S., Lemiale, V., Meriaux, C., Appelbe, B., and Muhlhaus, H. B., 2007, Computational approaches to studying non-linear dynamics of the crust and mantle, Phys. Earth Planet. Inter., 163(1-4), 69-82. https://doi.org/10.1016/j.pepi.2007.06.009
  35. Mueller, S., and Phillips, R. J., 1991, On the initiation of subduction, J. Geophys. Res.-Solid Earth, 96(B1), 651-665. https://doi.org/10.1029/90JB02237
  36. Negredo, A., Fernandez, M., Torne, M., and Doglioni, C., 1999, Numerical modeling of simultaneous extension and compression: The Valencia Trough (western Mediterranean), Tectonics, 18(2), 361-374. https://doi.org/10.1029/1998TC900026
  37. Ohuchi, T., Lei, X., Ohfuji, H., Higo, Y., Tange, Y., Sakai, T., Fujino, K., and Irifune, T., 2017, Intermediate-depth earthquakes linked to localized heating in dunite and harzburgite, Nat. Geosci., 10(10), 771-776. https://doi.org/10.1038/ngeo3011
  38. Perez-Gussinye, M., Morgan, J. P., Reston, T. J., and Ranero, C. R., 2006, The rift to drift transition at non-volcanic margins: Insights from numerical modelling, Earth Planet. Sci. Lett., 244(1-2), 458-473. https://doi.org/10.1016/j.epsl.2006.01.059
  39. Prieto, G. A., Florez, M., Barrett, S. A., Beroza, G. C., Pedraza, P., Blanco, J. F., and Poveda, E., 2013, Seismic evidence for thermal runaway during intermediate‐depth earthquake rupture, Geophys. Res. Lett., 40(23), 6064-6068. https://doi.org/10.1002/2013GL058109
  40. Regenauer-Lieb, K., Yuen, D. A., and Branlund, J., 2001, The initiation of subduction: Criticality by addition of water?, Science, 294(5542), 578-580. https://doi.org/10.1126/science.1063891
  41. Regenauer‐Lieb, K., and Yuen, D. A., 1998, Rapid conversion of elastic energy into plastic shear heating during incipient necking of the lithosphere, Geophys. Res. Lett., 25(14), 2737-2740. https://doi.org/10.1029/98GL02056
  42. Rice, J. R., 2006, Heating and weakening of faults during earthquake slip, J. Geophys. Res.-Solid Earth, 11, B05311.
  43. Ruh, J. B., Kaus, B. J., and Burg, J. P., 2012, Numerical investigation of deformation mechanics in fold‐and‐thrust belts: Influence of rheology of single and multiple decollements, Tectonics, 31, TC3005.
  44. Schmeling, H., and Jacoby, W. R., 1982, On modeling the lithosphere in mantle convection with non-linear rheology, J. Geophys., 50(1), 89-100.
  45. Sdrolias, M., Roest, W. R., and Muller, R. D., 2004, An expression of Philippine Sea plate rotation: the Parece Vela and Shikoku basins, Tectonophysics, 394(1-2), 69-86. https://doi.org/10.1016/j.tecto.2004.07.061
  46. Sibuet, J. C., Hsu, S. K., Le Pichon, X., Le Formal, J. P., Reed, D., Moore, G., and Liu, C. S., 2002, East Asia plate tectonics since 15 Ma: constraints from the Taiwan region, Tectonophysics, 344(1-2), 103-134. https://doi.org/10.1016/S0040-1951(01)00202-5
  47. So, B. D., and Yuen, D. A., 2014, Stationary points in activation energy for heat dissipated with a power law temperature‐dependent viscoelastoplastic rheology, Geophys. Res. Lett., 41(14), 4953-4960. https://doi.org/10.1002/2014GL060713
  48. Stern, R. J., 2004, Subduction initiation: spontaneous and induced, Earth Planet. Sci. Lett., 226(3-4), 275-292. https://doi.org/10.1016/S0012-821X(04)00498-4
  49. Tackley, P. J., 2000, The quest for self-consistent generation of plate tectonics in mantle convection models, Geophysical Monograph-American Geophysical Union, 121, 47-72.
  50. Thielmann, M., and Kaus, B. J., 2012, Shear heating induced lithospheric-scale localization: Does it result in subduction?, Earth Planet. Sci. Lett., 359, 1-13. https://doi.org/10.1016/j.epsl.2012.10.002
  51. van den Berg, A. P., and Yuen, D. A., 1997, The role of shear heating in lubricating mantle flow, Earth Planet. Sci. Lett., 151(1-2), 33-42. https://doi.org/10.1016/S0012-821X(97)00110-6
  52. van Wijk, J. W., 2005, Role of weak zone orientation in continental lithosphere extension, Geophys. Res. Lett., 32, L02303. https://doi.org/10.1029/2004GL022192
  53. Vissers, R. L. M., Drury, M. R., Hoogerduijn, E. H., Spiers, C. J., and van der Wal, D., 1995, Mantle shear zones and their effect on lithosphere strength during continental breakup, Tectonophysics, 249(3-4), 155-171. https://doi.org/10.1016/0040-1951(95)00033-J
  54. Warren, J. M., and Hirth, G., 2006, Grain size sensitive deformation mechanisms in naturally deformed peridotites, Earth Planet. Sci. Lett., 248(1-2), 438-450. https://doi.org/10.1016/j.epsl.2006.06.006
  55. Willett, S. D., 1999, Rheological dependence of extension in wedge models of convergent orogens, Tectonophysics, 305(4), 419-435. https://doi.org/10.1016/S0040-1951(99)00034-7
  56. Wittlinger, G., Tapponnier, P., Poupinet, G., Mei, J., Danian, S., Herquel, G., and Masson, F., 1998, Tomographic evidence for localized lithospheric shear along the Altyn Tagh fault, Science, 282(5386), 74-76. https://doi.org/10.1126/science.282.5386.74
  57. Yoon, S. H., Sohn, Y. K., and Chough, S. K., 2014, Tectonic, sedimentary, and volcanic evolution of a back-arc basin in the East Sea (Sea of Japan), Mar. Geol., 352, 70-88. https://doi.org/10.1016/j.margeo.2014.03.004
  58. Yuen, D. A., Fleitout, L., Schubert, G., and Froidevaux, C., 1978, Shear deformation zones along major transform faults and subducting slabs, Geophys. J. Int., 54(1), 93-119. https://doi.org/10.1111/j.1365-246X.1978.tb06758.x
  59. Zhong, S., and Gurnis, M., 1995, Towards a realistic simulation of plate margins in mantle convection, Geophys. Res. Lett., 22(8), 981-984. https://doi.org/10.1029/95GL00782