Browse > Article

Preparation of Urethane Nanocomposites with Inorganic Nano Fillers and Their Physical Properties  

Yang Yun-Kyu (School of Advanced Materials Engineering, College of Engineering, Chungnam National University)
Hwang Taek-Sung (School of Advanced Materials Engineering, College of Engineering, Chungnam National University)
Hwang Eui-Hwan (Kongju national University)
Publication Information
Polymer(Korea) / v.30, no.2, 2006 , pp. 129-134 More about this Journal
Abstract
Nanocomposites of polyurethane were prepared from inorganic nano particles, $Na^+-montmorillonite$ (MMT), silica, $CaCO_3$, and surface modified MMT and their properties were investigated. It was shown that the molecular weight and polydispenity of nanocomposites of polyurethane were 20000 to 28000 and 1.0 to 2.0, respectively. d-Spacing for nanocomposites of MMT were increased than that of pure MMT. Initial degradation temperature of nanocomposites were 250 to $280^{\circ}C$. And also, the range of weight loss for nanocomposites were decreased and the end of thermal degradation was observed at higher temperatures about $50^{\circ}C$. The elongation at break for $CaCO_3$ filled nanocomposites were the highest among the nanocomposites used in this study. studied. It was found that the tensile strength increased with increasing the filler contents while the silica nanocomposite exhibited the lowest increase and the $CaCO_3$ nanocomposite the highest.
Keywords
inorganic nano filler; nanocomposite; polyurethane; flame retardant; tensile strength;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 R. Krishnamoorti and R. A. Vaia, ACS Symp. Ser., 804, 7 (2002)
2 T. K. Chen and K. H. Wei, Polymer, 41, 1345 (2000)   DOI   ScienceOn
3 D. J. David and H. B. Staley, Analytical Chemistry of Polyurethane, Wiley-Interscience, New York, 1969
4 J. P. Kim, S. G. Lyu, K. S. Bae, and G. S. Sur, Polymer(Korea), 25, 263 (2001)   DOI   ScienceOn
5 J. Boxhammer, Polym. Testing, 20, 719 (2001)   DOI   ScienceOn
6 M. V. Pandya, D. D. Deshpande, and D. G. Hundiwale, J. Appl. Polym. Sci., 32, 4959 (1986)   DOI   ScienceOn
7 H. V. Boening, C. B. Miller, and J. E. Shottafter, J. Appl. Polym. Sci., 9, 523 (1965)   DOI
8 P. Aranda and E. Rtriz-Hitzky, Chem. Mater., 4, 1395 (1992)   DOI
9 M. Alexandre and D. Dubois, Mater. Sci. Eng., 28, 1 (2000)   DOI   ScienceOn
10 H. M. Jeong, B. K. Kim, and Y. J. Choi, Polymer, 41, 1849 (2000)   DOI   ScienceOn
11 Y. U. An, J. H. Chang, Y. H. Park, and J. M. Park, Polymer(Korea), 26, 381 (2002)
12 M. W. Noh and D. C. Lee, J. Appl. Polym. Sci., 74, 2811 (1999)   DOI   ScienceOn
13 G. Hernandez-Paron, R. M. Lima, R. Nava, M. V. Garcia-Garduno, and V. M. Castano, Adv. Polym. Technol., 21, 116 (2002)   DOI   ScienceOn
14 S. L Reegen, J. Appl. Polym. Sci., 10, 1247 (1966)   DOI
15 P. N. Lan, S. Corneillie, E. Schaacht, M. Davies, and A. Shard, Biomaterials, 17, 2273 (1996)   DOI   ScienceOn
16 M. Y. L. Chew, X. Zhou, and Y. M. Tay, Polym. Testing, 20, 87 (2001)   DOI   ScienceOn
17 C. Tonelli, T. Trombetta, M. Scicchitano, and G. Castiglioni, J. Appl. Polym. Sci., 57, 1031 (1995)   DOI   ScienceOn
18 P. Maiti, C. A. Batt, and E. P. Giannelis, Polym. Mater. Sci. Eng., 88, 58 (2003)
19 J. W. Gilman, C. L. Jackson, A. B. Morgan, and R. H. Harris, Jr., Chem. Meter., 12, 1866 (2002)
20 H. M. Jeong, B. K. Kim, and Y. J. Choi, Polymer, 41, 1849 (2000)   DOI   ScienceOn
21 Y. W. Tang, J. P. Santerre, R. S. Labow, and D. G. Taylor, J. Appl. Polym. Sci., 62, 1133 (1996)   DOI   ScienceOn
22 P. K. Saxena, K. G. Raut, S. R. Srinivasan, S. Sivaram, R. S. Rawat, and R. K. Jain, Constr. Build Meter., 5, 208 (1991)   DOI   ScienceOn