• 제목/요약/키워드: 인공지능 학습

검색결과 1,632건 처리시간 0.029초

어텐션과 어텐션 흐름 그래프를 활용한 의료 인공지능 모델의 설명가능성 연구 (A Research on Explainability of the Medical AI Model based on Attention and Attention Flow Graph)

  • 이유진;채동규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.520-522
    • /
    • 2022
  • 의료 인공지능은 특정 진단에서 높은 정확도를 보이지만 모델의 신뢰성 문제로 인해 활발하게 쓰이지 못하고 있다. 이에 따라 인공지능 모델의 진단에 대한 원인 설명의 필요성이 대두되었고 설명가능한 의료 인공지능에 관한 연구가 활발히 진행되고 있다. 하지만 MRI 등 의료 영상 인공지능 분야에서 주로 진행되고 있으며, 이미지 형태가 아닌 전자의무기록 데이터 (Electronic Health Record, EHR) 를 기반으로 한 모델의 설명가능성 연구는 EHR 데이터 자체의 복잡성 때문에 활발하게 진행 되지 않고 있다. 본 논문에서는 전자의무기록 데이터인 MIMIC-III (Medical Information Mart for Intensive Care) 를 전처리 및 그래프로 표현하고, GCT (Graph Convolutional Transformer) 모델을 학습시켰다. 학습 후, 어텐션 흐름 그래프를 시각화해서 모델의 예측에 대한 직관적인 설명을 제공한다.

의사 결정 나무를 활용한 초등 인공지능 융합 교육 프로그램 개발 (Development of Artificial Intelligence Convergence Education Program for Elementary Education Using Decision Tree)

  • 문현우;이영준
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.227-228
    • /
    • 2023
  • 정부의 인공지능 국가전략을 통해 인공지능 교육은 초등학교에서도 필수교육으로 대두되고 있다. 또한 인공지능 소양을 습득하기 위해 타 교과와 융합한 인공지능 융합 교육의 필요성이 증가하고 있고, 인공지능 발달에 대한 수학의 역할을 고려하여 수학 교과를 통해 인공지능의 이해를 기르는 것이 강조되고 있다. 따라서 본 연구에서는 수학 교과와 인공지능 교과가 융합한 인공지능 융합 교육 프로그램을 개발하기 위해 초등학교 3~4학년 수학 교과의 도형 분류를 의사 결정 나무 모델을 활용하여 가르치는 인공지능 융합 교육 프로그램을 개발하였다. 본 연구를 통해 개발된 프로그램은 초등학생의 인공지능 개념학습을 통한 인공지능 기초소양 함양뿐만 아니라 수학 교과의 이해 및 성취도 향상에 도움이 될 것으로 기대된다.

  • PDF

기계습의 영상인식결과에 대한 입력영상의 영향도 분석 기법 (Analysis Method of influence of input for Image recognition result of machine learning)

  • 김도완;김우성;이은헌;김현철
    • 한국컴퓨터교육학회 학술대회
    • /
    • 한국컴퓨터교육학회 2017년도 하계학술대회
    • /
    • pp.209-211
    • /
    • 2017
  • 기계학습은 인공지능(AI, Artificial Intelligence)의 일종으로 다른 인공지능 알고리즘이 정해진 규칙을 기반으로 주어진 임무(Task)를 해결하는 것과는 달리, 기계학습은 수집된 Data를 기반으로 최적의 솔루션을 학습한 후 미래의 값들을 예측하거나 해석하는 방법을 사용하고 있다. 더욱이 인터넷을 통한 연결성의 확대와 컴퓨터의 연산능력 발전으로 가능하게 된 Big-Data를 기반으로 하고 있어 이전의 인공지능 알고리즘에 비해 월등한 성능을 보여주고 있다. 그러나 기계학습 알고리즘이 Data를 학습할 때 학습 결과를 사람이 해석하기에 너무 복잡하여 사람이 그 내부 구조를 이해하는 것은 사실상 불가능하고, 이에 따라 학습된 기계학습 모델의 단점 또는 한계 등을 알지 못하는 문제가 있다. 본 연구에서는 이러한 블랙박스화된 기계학습 알고리즘의 특성을 이해하기 위해, 기계학습 알고리즘이 특정 입력에 대한 결과를 예측할 때 어떤 입력들로 부터 영향을 많이 받는지 그리고 어떤 입력으로부터 영향을 적게 받는지를 알아보는 방법을 소개하고 기존 연구의 단점을 개선하기 위한 방법을 제시한다.

  • PDF

IoT 센서의 시계열 데이터 정확도 향상을 위한 인공지능 기반 분류 기법 (Artificial Intelligence-based Classification Scheme to improve Time Series Data Accuracy of IoT Sensors)

  • 김진영;심이삭;윤성훈
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권4호
    • /
    • pp.57-62
    • /
    • 2021
  • 인공지능을 위한 병렬연산 능력이 향상됨에 따라 인공지능 적용 분야가 다양한 방향으로 확대되고 있다. 특히 방대한 데이터를 처리해야 하는 IoT센서의 데이터를 처리하기 위해 인공지능이 도입되고 있다. 하지만 시간에 따른 데이터의 중요도가 달라지는 IoT 시계열 데이터 특성상 기존의 인공지능 학습 기법을 그대로 적용하기에는 한계점이 있다. 본 과제에서는 IoT 센서 데이터를 효과적으로 처리하기 위해 시간가중치기반 및 사용자 상태값 기반 인공지능 처리기법을 연구한다. 상기 기법을 통해 기존 인공지능 학습을 적용시키는 것 보다 높은 센서 정확도를 확보 할 수 있게 된다. 이에 더해, 해당 연구를 기반으로 다양한 분야에서 인공지능 학습을 적용하는 방안을 제시하고, 지속적인 연구를 통해 다양한 분야로의 확장을 기대할 수 있다.

연합학습의 의료분야 적용을 위한 자기지도 메타러닝 (Self-supervised Meta-learning for the Application of Federated Learning on the Medical Domain)

  • 공희산;김광수
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.27-40
    • /
    • 2022
  • 최근 많은 발전을 이룬 의료 인공지능은 의사가 진단과 결정을 내리는 데 도움을 주는 등 중요한 역할을 수행하고 있다. 특히, 흉부 엑스레이 분야는 접근성 및 흉부질환 탐지에 유용함과 최근 COVID-19 상황이 도래함에 따라 많은 관심을 받고 있다. 그러나, 데이터의 수가 많음에도 레이블이 있는 데이터의 수가 부족하므로 효과적인 인공지능 모델을 만드는데 한계가 있다. 이러한 문제를 완화하는 방안으로 연합학습을 흉부 엑스레이 데이터에 적용한 연구가 등장했지만, 여전히 다음과 같은 문제를 내포하고 있다. 1) Non-IID 환경에서 발생할 수 있는 문제를 고려하지 않았다. 2) 연합학습 환경에서도 여전히 클라이언트의 레이블이 있는 데이터가 부족하다. 우리는 자기지도학습 모델을 연합학습의 Global 모델로 사용함으로써 위와 같은 문제를 해결하는 방법을 제안한다. 이를 위해 흉부 엑스레이 데이터를 사용한 연합학습에 알맞은 자기지도학습 방법론을 실험적으로 탐색하며, 자기지도학습 모델을 연합학습에 사용함으로써 얻을 수 있는 장점을 검증한다.

초등과정 인공지능 학습원리 이해를 위한 보드게임 기반 게이미피케이션 교육 실증 (Development of a board game-based gamification learning model for training on the principles of artificial intelligence learning in elementary courses)

  • 김진수;박남제
    • 정보교육학회논문지
    • /
    • 제23권3호
    • /
    • pp.229-235
    • /
    • 2019
  • 게이미피케이션은 수업에 게임의 요소나 게임을 접목함으로서 학생의 흥미도를 향상시키고, 직접 참여할 수 있는 환경을 조성함으로서 보다 뛰어난 학업성취도 향상을 도우며, 이와 같은 게이미피케이션을 인공지능이라는 IT기술에 융합함으로서 초등 과정을 대상으로 핵심원리를 학습할 수 있는 교육과정을 제안한다. 제안된 교육과정은 인공지능의 학습방법에 대해 보드 게임형식으로 학습함으로서 초등 과정의 피학습자에 수준에 맞추어 원리를 이해할 수 있도록 돕는다. 이와 같은 게임의 요소를 접목한 학습방법은 피학습자에게 IT원리를 학습할 수 있도록 함으로서 다양한 관점에서 대상을 이해하는 능력을 키우고, 컴퓨팅 사고력을 강화한다. 제안된 게이미피케이션을 접목한 초등 인공지능 교육과정은 최근 2015 교육과정에서부터 크게 부각되고 있는 정보과학 교육과정의 발전에 이바지 할 수 있을 것으로 예상된다.

A Study on the Production of 3D Datasets for Stone Pagodas by Period in Korea

  • Byong-Kwon Lee;Eun-Ji Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권9호
    • /
    • pp.105-111
    • /
    • 2023
  • 현재, 인공지능 학습을 이용한 콘텐츠 복원의 대부분 2D 형태의 학습이 대부분이다. 하지만, 3D형태의 인공지능 학습은 기존의 2축(X,Y)에서 3축(X,Y,Z)의 많은 계산량과 학습속도가 많이 소요되는 단점으로 미진한 상태이다. 본 논문은 2차원적인 문화재 정보(이미지)를 기반을 시대별 우리나리 석탑을 분석하고 3D 모델링해 인공지능 학습을 위한 데이터-셋을 확보하는 것이 목적이다. 또한, 대한민국의 시대별 탑의 차이점과 특징을 분석하고, 인공지능 학습에 적합한 특징 모델링 방법을 제안했다. 문화재 복원은 다양한 자료와 전문가의 기술 및 역사적인 기록물 자료에 의존해 복구한다. 본 연구로 문화재 복원에 필요한 정보를 기록하고 관리함으로써 향후 우리나라 전통 탑을 복원하고 유지하는 중요한 기록 유산으로 활용될 수 있을 것으로 사료된다.

수학교육에서의 인공지능 활용에 대한 초등 교사의 인식 탐색 (Elementary School Teachers' Perceptions of Using Artificial Intelligence in Mathematics Education)

  • 김정원;권민성;방정숙
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제26권4호
    • /
    • pp.299-316
    • /
    • 2023
  • 본 연구는 교육에서 인공지능 활용의 중요성과 필요성이 제기됨에 따라 수학교육에서 인공지능 활용에 대한 초등 교사들의 인식을 탐색하는 것을 목적으로 한다. 이를 위하여 초등 교사 161명을 대상으로 인공지능과 수학교육에 대한 태도 및 수학 교수, 학습, 평가 도구로서 인공지능 활용에 대한 인식을 5점 Likert 척도를 활용하여 분석하였다. 연구 결과, 초등 교사들은 전반적으로 수학의 교수, 학습, 평가를 위한 도구로 AI를 활용하는 데에 긍정적인 인식을 드러냈다. 특히, AI를 활용한 수학교육은 맞춤형 개별 교수 학습, 선수 학습 보충, 평가 결과 분석에 도움이 될 것이며 인공지능이 교사의 역할을 대체할 수 없다는 데에 강한 긍정을 드러냈다. 한편, 초등 교사들은 인공지능을 활용한 수학 수업에 대한 자신감이나 준비에서는 상대적으로 낮은 인식을 드러냈는데, 이는 인공지능과 관련된 수학 수업의 실행이나 연수 이수의 여부에 따라 유의한 차이를 드러냈다. 본 연구의 결과를 바탕으로 수학 교육에서 인공지능을 효과적으로 활용하기 위한 교사의 역할 및 교사들에게 필요한 지원에 대한 시사점을 논의하였다.

누적 가중치 변화의 시각화를 통한 심층 신경망 분석시스템 (Deep Neural Network Analysis System by Visualizing Accumulated Weight Changes)

  • 양태린;박진호
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제29권3호
    • /
    • pp.85-92
    • /
    • 2023
  • 최근 ChatGPT나 자율주행 자동차 등의 인공지능 분야의 급속한 발전으로 인해 인공지능에 대한 관심이 높아졌다. 그러나 아직 인공지능은 학습 과정에서 알 수 없는 요소가 많이 존재하여 모델을 개선하거나 최적화하기 위해서 필요 이상의 시간과 노력을 들여야 하는 경우가 많다. 따라서, 인공지능 모델의 학습 과정에서 가중치 변화를 명확하게 이해하고 해당 변화를 효과적으로 분석할 수 있는 도구 또는 방법론이 절실하게 요구되고 있다. 본 연구에서는 이러한 점을 해결하기 위해 누적 가중치 변화량을 시각화해주는 시스템을 제안한다. 시스템은 학습의 일정한 기간마다 가중치를 구하고 가중치의 변화를 누적시켜서 누적 가중치로 저장하여 3차원 공간상에 나타내게 된다. 이로 인해 보는 이로 하여금 한눈에 레이어의 구조와 현재의 가중치 변화량이 이해되기 쉽게 구성하였다. 이러한 연구를 통해 인공지능 모델의 학습 과정이 어떻게 진행되는지에 대한 이해와 모델의 성능 향상에 도움이 되는 방향으로 하이퍼 파라미터를 변경할 수 있는 지표를 얻게 되는 등 인공지능 학습 과정의 다양한 측면을 탐구할 수 있을 것이다. 이러한 시도를 통해 아직 미지의 영역으로 여겨지는 인공지능 학습 과정의 일부를 보다 효과적으로 탐색하고 인공지능 모델의 발전과 적용에 기여할 수 있을 것으로 기대된다.

초등학생을 위한 문장의 정서 분류 인공지능 교육 콘텐츠 개발 및 적용 (Development of Artificial Intelligence Education Content to Classify Emotion of Sentences for Elementary School)

  • 심재권;권대용
    • 정보교육학회논문지
    • /
    • 제24권3호
    • /
    • pp.243-254
    • /
    • 2020
  • 인공지능 인력을 양성하기 위해 주요국에서는 초등학교에서부터 인공지능 교육을 제공하고자 하는 노력을 기울이고 있다. 초등학교에서 인공지능 교육을 도입하기 위해서는 초등학생 수준을 고려한 교육과정과 내용이 필요하다. 본 연구는 초등학생의 인공지능 교육을 목적으로 언플러그드 수준의 조작을 통해 인공지능이 학습하는 원리를 체험하는 교육 콘텐츠를 개발하였다. 개발한 교육 콘텐츠는 문장의 정서를 판단하는 인공지능으로 주제를 선정하였고, 문제를 해결하기 위해 데이터 속성을 도출하여 수집하고 인공지능이 학습하는 과정을 시뮬레이션하여 문제를 해결하는 과정으로 구성하였다. 연구결과, 인공지능에 대한 태도가 사전보다 사후에 증가하였고, 과제 수행률이 평균 85%로 나타나 제안하는 인공지능 교육 콘텐츠가 교육적 의의가 있음을 보여주었다.