• Title/Summary/Keyword: 이산시간제어

Search Result 283, Processing Time 0.026 seconds

A Usage Parameter Control based on Cell Loss Priority (셀 손실 우선순위 기반의 사용 변수 제어)

  • 조태경;최병욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.7B
    • /
    • pp.1296-1304
    • /
    • 1999
  • In this paper, we propose an enhanced usage parameter control algorithm, which is one of the preventive traffic control method in ATM networks. Proposed algorithm is based on the cell loss priority bit in the ATM cell header. This algorithm can eliminate the measurement phasing problem in cell conformance testing in ATM networks. Proposed algorithm can minimize the cell loss ratio of high priority cell(CLP = 0) and resolve the burstiness of cells which may be introduced in traffic multiplexing and demultiplexing procedure. For the performance evaluation, we simulate the proposed algorithm with discrete time input traffic model, the results show that the performance of proposed algorithm is better than that of ITU-T usage parameter control algorithm.

  • PDF

Transformerless DGS Control using a Z-source Boost Inverter (Z-원 승압인버터를 이용한 변압기 없는 DGS제어)

  • Park Young-San
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1617-1624
    • /
    • 2006
  • This paper presents system modeling, modified space vector PWM implementation and design of a closed loop controller of the Z-source inverter which consists of L and C components and shoot-through zero vectors for DGS. Zero vector periods of SVPWM utilized to boost DC-link voltage instead of conventional DC/DC converter and transformer. Only two shoot-through vut(nn are used for DC link voltage control during one switching period without loss of non-zero vectors. Discrete time sliding mode controller, robust servomechanism controller are designed to realize fast and no-overshoot current response and a steady state voltage error. Simulation results are shows the effectiveness of the proposed algorithm.

The Study for Implementation method of Concurrency Control for DataBase Flow Graphs (DBFG를 이용한 동시성제어 구현 방법에 관한 연구)

  • 남태희;위승민
    • Journal of the Korea Society of Computer and Information
    • /
    • v.1 no.1
    • /
    • pp.147-158
    • /
    • 1996
  • This paper proposed a concurrency control structure based on specialized data flow graphs that was analysed a run-time concurrency control activity to be integrated with the task scheduler Data were viewed as flowing on the arcs from one node to another in a stream of discrete to tokens. The network that Is based upon the Entity-Relationship model, can be viewed a fixed problems used query tokens as a data flow graph. The performance was measured used in the various expriments compared the overall performance of the different concurrency control methods, DBFG (DataBase Flow graphs) scheduling had the knowledge to obtain better performance than 2PL in a distributed environment.

  • PDF

Making Robust Stochastic Stabilizer for Uncertain T-S fuzzy Systems with Input Delay (입력지연을 갖는 불확실 T-S 퍼지 시스템의 강인 디지털 확률적 안정화기 설계)

  • 이호재;박진배;김정찬;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.321-324
    • /
    • 2003
  • This paper discusses a robust stochastic stabilization of uncertain Takagi-Sugeno (T-S) fuzzy system with Markovian input delay. The finite Markovian process is adopted to model the input delay of the overall control system. It is assumed that the zero and hold devices are used for control input. The continuous-time T-S fuzzy system with the Markovian input delay is discretized for easy handling delay, accordingly, the discretixzd T-S fuzzy system is represented by a uncertain discrete-time T-S fuzy system with jumping parameters. The robust stochastic stabilizibility of the uncertain jump T-S fuzzy system is derived and formulated in terms of linear matrix inequalities (LMIs).

  • PDF

Stability Analysis of a Networked Control System with Multiple Packet Transmission (다중 패킷을 전송하는 네트워크 제어시스템의 안정성 분석)

  • Jung, Joon-Hong;Park, Ki-Heon;Lee, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.5
    • /
    • pp.18-29
    • /
    • 2007
  • The main objective of this paper is to propose a new stability analysis method for a networked control system with multiple packet transmission. The new scheduling method that can guarantee the maximum time delay and discrete switch state equation model which represent a network data loss is proposed. The equivalent model of a MIMO(multi-input multi-output) networked control system is derived from a state space model of linear time invariant interconnected systems in the form of asynchronous dynamical system. Using this model, this paper presents new stability theorems that can determine stability of the networked control system with regard to time delay, data loss, and the number of transmission packets. Simulation results verify the effectiveness of proposed stability analysis method.

Discrete-Time State Feedback Algorithm for State Consensus of Uncertain Homogeneous Multi-Agent Systems (불확실성을 포함한 다 개체 시스템의 상태 일치를 위한 이산 시간 출력 궤환 협조 제어 알고리즘)

  • Yoon, Moon-Chae;Kim, Jung-Su;Back, Juhoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.390-397
    • /
    • 2013
  • This paper presents a consensus algorithm for uMAS (uncertain Multi-Agent Systems). Unlike previous results in which only nominal models for agents are considered, it is assumed that the uncertain agent model belongs to a known polytope set. In the middle of deriving the proposed algorithm, a convex set is found which includes all uncertainties in the problem using convexity of the polytope set. This set plays an important role in designing the consensus algorithm for uMAS. Based on the set, a consensus condition for uMAS is proposed and the corresponding consensus design problem is solved using LMI (Linear Matrix Inequality). Simulation result shows that the proposed consensus algorithm successfully leads to consensus of the state of uMAS.

Chaotic Circuit with Voltage Controllability for Secure Communication Applications (암호통신 응용을 위한 전압제어형 카오스 신호 발생회로)

  • Zhou, Jichao;Shin, Bong-Jo;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4159-4164
    • /
    • 2012
  • This paper presents a chaotic circuit with voltage controllability for secure communication applications. The proposed circuit which has two control voltages consists of the nonlinear function block(NFB) with three MOS transistors, one source follower and non-overlapping two-phase clock generator for sample and hold. By SPICE simulation, chaotic dynamics such as time waveform, frequency analysis and bifurcations were analyzed. SPICE results showed that proposed circuit can make various chaotic signals by control voltage.

Trajectory Control of Robot Manipulators Based on the Preview Algorithms (예측 알고리즘을 이용한 로보트 매니퓰레이터의 경로제어)

  • 윤원식;송창섭;양해원;서일홍;오재응
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.5
    • /
    • pp.486-502
    • /
    • 1989
  • This paper proposes two types of the preview algorithms to predict the velocities and joint positions, and deals with a control approach using the preview algorithms for the precise trajectory control. Specifically, a predictor as the form of discrete time state equations is proposed based on the robot dynamics model linearized by the computed toque method. And another state predictor is proposed by the best line fitting in the least square sense, where present joint velocities and positions and several past positions are employed. Then computer simulations are performed for the SCARA robot with two d.o.f to show the validities of the proposed algorithms.

  • PDF

Robust Discrete-Time Sliding Mode Control of Vehicle Steering System with Uncertainty (불확실성을 포함한 차량 조향장치의 강인 이산시간 슬라이딩 모드 제어)

  • Kim, Han-Me;Kim, Doo-Hyung;Park, Kyoung-Taik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.295-301
    • /
    • 2012
  • This paper deals with the design of robust DSMC (Discrete-Time Sliding Mode Control) scheme in order to overcome system uncertainty in steering system with mechanically joined structure. The proposed control scheme is one of robust control schemes based on system dynamics. Therefore, system dynamics required is not obtained from physical law but SCM (Signal Compression Method) through experiment in order to avoid complicate mathematical development and save time. However, SCM has a shortcoming that is the limitation of with $2^{nd}$ order linear model which does not include the dynamic of high-frequency band. Thus, considering system uncertainty, DSMC is designed. In addition, to reduce the chattering problem of DSMC, DSMC is derived from the reaching law and the Lyapunov stability condition. It is found that the proposed control scheme has robustness in spite of the perturbation of system uncertainty through computer simulation.

Nonlinear Control by Feedback Linearization for Panel Flutter at Elevated Temperature (열하중을 받는 패널플러터의 궤환 선형화에 의한 비선형제어)

  • 문성환;이광주
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.45-52
    • /
    • 2006
  • In this study, a nonlinear control by feedback linearization method, one of nonlinear control schemes based on the nonlinear model, is proposed to suppress the flutter of a supersonic composite panel using piezoelectric materials. Most of the previous panel flutter controllers are the LQR(Linear Quadratic Regulator) which is based on the linear model. A nonlinear feedback linearizing controller proposed in this study considers the nonlinear characteristics of the system model. We use the actuator implemented by piezoceramic PZT. Using the principle of virtual displacements and a finite element discretization with the conforming four-node rectangular element, we first derive the discretized dynamic equations of motion, which are transformed into a nonlinear coupled-modal equations of motion of state space form. The effectiveness of the proposed method is also compared with the LQR based on the linear model through numerical simulations in the time domain using the Newmark method.