• Title/Summary/Keyword: 유한 요소 영역분할기법

Search Result 34, Processing Time 0.021 seconds

Load Balancing for Parallel Finite Element Analysis in Computing GRID Environment (컴퓨팅 그리드 시스템에서의 병렬 유한요소 해석을 위한 로드 밸런싱)

  • Lee,Chang-Seong;Im,Sang-Yeong;Kim,Seung-Jo;Jo,Geum-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.1-9
    • /
    • 2003
  • In GRID environments, an efficient load balancing algorithm should be adopted since the system performances of GRID system are not homogeneous. In this work, a new two-step mesh-partitioning scheme based on the graph-partitioning scheme was introduced to consider the difference of system performance. In the two-step mesh-partitioning scheme, the system performance weights were calculated to reflect the effect of heterogeneous system performances and WEVM(Weighted Edge and vertex Method) was adopted to minimize the increase' of communications. Numerical experiments were carried out in multi-cluster environment and WAN (Wide Area Network) environment to investigate the effectiveness of the two-step mesh-partitioning scheme.

Development of Finite Element Domain Decomposition Method Using Local and Mixed Lagrange Multipliers (국부 및 혼합 Lagrange 승수법을 이용한 영역분할 기반 유한요소 구조해석 기법 개발)

  • Kwak, Jun Young;Cho, Hae Seong;Shin, Sang Joon;Bauchau, Olivier A.
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.469-476
    • /
    • 2012
  • In this paper, a finite element domain decomposition method using local and mixed Lagrange multipliers for a large scal structural analysis is presented. The proposed algorithms use local and mixed Lagrange multipliers to improve computational efficiency. In the original FETI method, classical Lagrange multiplier technique was used. In the dual-primal FETI method, the interface nodes are used at the corner nodes of each sub-domain. On the other hand, the proposed FETI-local analysis adopts localized Lagrange multipliers and the proposed FETI-mixed analysis uses both global and local Lagrange multipliers. The numerical analysis results by the proposed algorithms are compared with those obtained by dual-primal FETI method.

Computational Efficiency of 3-D Contact Analysis by Domain/Boundary Decomposition Formulation (영역/경계 분할 정식화에 의한 삼차원 접촉 해석의 효율성 검토)

  • Kim, Yong-Uhn;Ryu, Han-Yeol;Shin, Eui-Sup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.469-476
    • /
    • 2007
  • A domain/boundary decomposition technique is applied to carry out efficient finite element analyses of 3-D contact problems. Appropriate penalty functions are selected for connecting an interface and contact interfaces with neighboring subdomains that satisfy continuity constraints. As a consequence, all the effective stiffness matrices have positive definiteness, and computational efficiency can be improved to a considerable degree. If necessary, any complex-shaped 3-D domain can be divided into several simple-shaped subdomains without considering the conformity of meshes along the interface. With a set of numerical examples, the basic characteristics of computational efficiency are investigated carefully.

The Moving Finite Element Scheme for Time-Dependent Problems with Large Gradients (변화도에 따른 동적문제의 유한요소해석)

  • 김치경;진치섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.3
    • /
    • pp.133-141
    • /
    • 1993
  • 탄성체에서 파의 흐름, 층류 그리고 난류에서 전단층과 같은 많은 동적문제들을 유한요소성 또는 차분법으로 해석할 때 자동분할기법이 문제의 해의 정확도를 크게 향상 시켜왔다. 일정한 속도로 움직이는 열원은 그 열원의 내부 그리고 주위에서 높은 변화도를 발생 시킨다. 이렇게 변화도가 심한 부분은 유한요소법으로 해석할 때 적절하고 세밀하게 분할 된 요소만이 만족시런 해를 얻을 수 있을 것이다. 본 연구에서는 공간-시간 영역에서 변화도의 크기에 따라 시간간격이 임의로 조정되는 자동 시간간격 조정법을 발전시켰다.

Analysis of Elasto-Plastic Problems Using the Generalized Finite Element Method with Global-Local Enrichment Functions (전체-국부 확장함수를 지닌 일반유한요소법을 이용한 탄소성해석)

  • Han, So-Jeong;Kim, Hee-Cheul;Lee, Young-Hak;Kim, Dae-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.773-777
    • /
    • 2011
  • 본 논문에서는 국부적으로 비선형 거동을 보이는 고전적인 $J_2$ 소성흐름 이론에 근거한 탄소성 문제의 해를 효율적으로 구하기 위해 전체-국부 확장함수를 지닌 일반유한요소법을 제안한다. 제안된 기법은 비선형 거동을 보이는 영역을 포함하는 국부 문제의 비선형 해를 구하고 이를 일반유한요소법의 단위 오목 분할의 개념을 통해 전체 문제의 해 공간을 확장하는데 이용한다. 이는 적은 계산량으로 복잡한 탄소성문제의 정확한 해를 얻는 것을 가능하게 하며 기법의 강건성과 정확성을 입증하기 위한 수치해석 예제가 다루어진다.

  • PDF

Stress Intensity Factor Calculation Using the Hybrid Formulation of Boundary and Finite Element Method (1st Report) (경계요소-유한요소 혼합법에 의한 균열선단의 응력강도계수 계산 (제1보))

  • In-Sik Nho;Chae-Whan Rim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.38-45
    • /
    • 1998
  • It is a tedious and excessive time consuming process to model the local area of crack tip part of structures in calculation of stress intensity factors by FEM. So, in this paper, the hybrid method of FEM and BEM approach was formulated to overcome this type of problems. The multi-domained BEM was adopted to simplify the modelling process of complex geometry and singularity characteristics of crack tip part and the ordinary FEM modelling was used in the rest part. The example calculations shows very good results compared with analytic solutions and other numerical method.

  • PDF

Coupled Thermal/Structural Analysis of Mechanical Ablation by Domain/Boundary Decomposition Method (영역/경계 분할법을 적용한 기계적 삭마 과정의 열구조 연계 해석)

  • Shin, Eui-Sup;Kim, Sung-Jun;Kim, Jong-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • A coupled thermal/structural analysis of mechanical ablation is performed based on domain/boundary decomposition and finite element method. The ablative material non-linearity and boundary non-linearity can be easily localized within a few subdomains and/or on the boundary interfaces. An enthalpy method is applied to simplify the effect of heat of pyrolysis in the ablative subdomains. In addition, maximum in-plane shear stress is considered as a surface recession criterion for the mechanical ablation simulation. The basic characteristics of the proposed method are examined carefully through numerical experiments.

An Expert Finite Element Discretization for Time-Dependent Structural Problems (시간 종속 구조응력해석을 위한 전문가 유한요소 모델링)

  • 주관정
    • Computational Structural Engineering
    • /
    • v.3 no.3
    • /
    • pp.125-131
    • /
    • 1990
  • A finite element technique for the time dependent large structural problems is presented. It is based on the error estimation for the bases of solution spaces. An a-posteriori energy norm of residual error serves as the error indicator. Mode shapes which are calculated by scaling the Ritz vectors are applied to discretize the continuous spatial domain. Finally, the performance of the proposed methods is demonstrated by solving simple examples.

  • PDF

Parallel Computation on the Three-dimensional Electromagnetic Field by the Graph Partitioning and Multi-frontal Method (그래프 분할 및 다중 프론탈 기법에 의거한 3차원 전자기장의 병렬 해석)

  • Kang, Seung-Hoon;Song, Dong-Hyeon;Choi, JaeWon;Shin, SangJoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.889-898
    • /
    • 2022
  • In this paper, parallel computing method on the three-dimensional electromagnetic field is proposed. The present electromagnetic scattering analysis is conducted based on the time-harmonic vector wave equation and the finite element method. The edge-based element and 2nd -order absorbing boundary condition are used. Parallelization of the elemental numerical integration and the matrix assemblage is accomplished by allocating the partitioned finite element subdomain for each processor. The graph partitioning library, METIS, is employed for the subdomain generation. The large sparse matrix computation is conducted by MUMPS, which is the parallel computing library based on the multi-frontal method. The accuracy of the present program is validated by the comparison against the Mie-series analytical solution and the results by ANSYS HFSS. In addition, the scalability is verified by measuring the speed-up in terms of the number of processors used. The present electromagnetic scattering analysis is performed for a perfect electric conductor sphere, isotropic/anisotropic dielectric sphere, and the missile configuration. The algorithm of the present program will be applied to the finite element and tearing method, aiming for the further extended parallel computing performance.

An Algorithm of Automatic Mesh Generation by Recursive Subdivisions (순환적 분할에 의한 유한 요소망 자동 생성 알고리즘)

  • 이재영
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.145-155
    • /
    • 1996
  • This paper suggests a new algorithm of automatic mesh generation over planar domains with arbitrarily shaped boundaries and control curves. The algorithm is based on the method of recursively subdividing the domain by the path connecting, with minimum penalty value, two points on the super-loop, which consists of the boundaries and the control curves, The algorithm is not subject to any limitation on the shape of the domain, and its process can be fully automated. Therefore, this algorithm can be implemented into computer programs which require minimal user intervention while generating finite element meshes over complicated domains. This algorithm can also be easily extended for application to the generation of meshes over curved surfaces, or to the adaptive mesh generation.

  • PDF