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The Moving Finite Element Scheme for
Time-Dependent Problems with Large Gradients
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Abstract

Moving mesh technique has been used successfully to improve the accuracy of both finite el-
ement. and finite difference for a variety of time-dependent problems involving wave flows in
elastic beams, shear layers in laminar and turbulent flows. A moving heat source will produce
steep gradients of the temperature within and near the region of moving source. Therefore, a
properly graded finite element mesh is required for a satisfactory resolution of the field. In this
study. an adaptive time-step control scheme of the finite element mesh in the space-time domain
for these problems is developed,

Keywords : moving mesh technique, time-dependent problems, heat source, time-step control
scheme, space-time domain
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1. Introduction

Adaptive mesh techniques are currently re-
ceiving increased attention in the literature|1l,
2,3.4,5,6,7.8]. In the solution of large scale
transient problems that involve phase bound-
aries during nonequilibrium thermal processes
or classical boundary layers, it might be hard
to accurately capture fine-scale features by
way of the structured mesh configurations
characteristic of classical finite difference
procedures  for treating the temporal
variations. Regions of rapid change are embed-
ded in regions where the flow variables vary
smoothly. However, the inaccurate represen-
tation of these subregions in the numerical
solutions may deteriorate the overall accuracy
obtained. As these subregions which require a
finer gridding are usually not known a prior
and /or change position, either a fine grid has
to be employed over the whole domain, or
adaptive refinement techniques are required.
Unstructured meshes of finite element
methods facilitate adaptive mesh refinement
strategies that prove to be essential in the
analysis of the problems mentioned above.
Ideally, a finite element computer program
should generate its own mesh geometry from a
minimum number of geometric parameters.
The amount of input data required 1s minimal,
and once the relevant coding has been written
and tested the possibility of errors is largely
elimnated. On the other hand, it may be diffi-
cult to devise a suitable algorithm for mesh
generation, and few attemps have been made
to develop general methods. Particular forms
of meshes can, however, be readily generated
for simple boundary shapes and can then be
modified to suit a wide range of problems.
Unstructured meshes are used in the vicinity

of large temporal rates of change without
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requring small time steps to be used every-

where.

2. Discretization of Time Slab with an
Unstructured Mesh

The domain of the time-slab 1s formulated
with the finite element representation by
Galerkin

three-node

employing the approach.

Two-dimensional triangular
elements 1n space and time are used to
discretize the time slab. In the linear,
two-dimensional case, the temperature field
u'(x.t) 1n an element is represented by the

equation
w=a,to, x+ay t (1)

Substituting nodal temperatures and
coordinates into this equation to solve for the
constants ay, a., 23 and then substituting back
into Equation(1) gives the temperature distri
bution for an element in terms of the shape

functions and the nodal vajues as,

(g™

3
wix,t)=Y N(x,t) y (&
(I
where,

N\(x,t)f—?{q—[a,%-bl x+c, t],

1—1, 2, 3 (3)
and,
a=xt,—xt, b=t —t, ¢ =x,—X,

for 5 k==1,2,3 (1)

with x;, t; the nodal coordinates and A is the
surface area of the element in space time.
Using the weighted residual process in which
the weighting functions are the shape

functions defining the approximations, the
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Galerkin method for the heat conduction prob-
lem gives

G o N0

L:'L 2, 3 (5)

where (G® is the finite element domain,
Evaluating the integrals after inserting the

3
temperature approximation u®==3% N, u, results
i1
n
[gliu + gt =0 (6)

where

[ g]:[ (kN, , N, +Fpc,N, N, ) dGe

JGe
[ n, kN; N, , dr* (7)
! re
{q}:[ fN, dG* (8)
Je

2.1 Calculation of the Temperature Time Rate
of Change

To evaluate the time gradients of tempera-
ture at each time level, it is necessary to con-
sider the standard procedure of using finite
elements in space. The procedure here is a
semidiscretization using the Galerkin’s residual
method. We consider a generic element for the
Galerkin formulation, Assuming linear approxi-
mation for an elememt as in Equation(2), we
have

W (x,t) =T N(x) u(t) (9)
=]

where N, are the usual shape functions defined

piecewise, element by elements :ul are the
time dependent nodal values of u(x,t). Now
according to Galerkin's method
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(%r 2 . gul,  auh -
i Xx[ P (K—ax ) pCp‘;t—-“i‘f] Nidx==,

=1, 2 (10)

Integrating by parts of the first term and sub-
stituting of u"==YNu leads to

2 2
62 | N N dxtpe, 3 [ “N, N, u, dx
i=1J X t==1J % ’

=™ £ Nidx+ic uy N,

(11)

This equation can be written in the simplified
form,

k] iu 4 el ta) = {q} (12)

where (k] 1s known as the conductivity
matrix, [c] is called the capacitance matrix,
and {q} is the heat input vector. {1} is the vec-
tor of time derivatives of the urknown tem-
perature in {ui. Therefore, the gradient of sol-
ution can be obtained as

st=le ] Wa— 1k fu}] (13)

This expression is used to evaluate the nodal
values of the time rates of temperature at the
beginning and end of a time-slab that are used
in the adaptive mesh generation.

3. Mesh Scheme

A mesh moving technique that has been de-
veloped is simple and efficient to discretize
solutions of the partial differential equation,
At each time-step, it uses the node locations
and the nodal values of an error indicator,
such as the solution gradient to control the
motion of the mesh. As time evolves, the
mesh can move, change size, or change orien-
tation. At each time-step, new meshes can be
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created and old ones vanish. A mesh change is
performed at every n time steps, depending on
the solution gradients calculated.

Figure 1. illustrates a mesh scheme for
discretizing a time slab when it is anticipated
that the locations of maximum (both space
and time) gradients lie along a line AB. This
would be the case if a wave were travelling in
a rod at a constant speed or if an external heat
source were moving along the rod with a con-
stant velocity(this will be the test case
illustrated later). Along such a principal line
the mesh should be characterized by small
elements in both space and time dimensions.
The elements of the mesh shall be larger the
further they are away from this line. It should
be noted that once having established this
principal line, the domain is divided into two
subregions. The principal line is divided by nj
nodes into nj—1 sides of equal length I,
Meshing is performed in the left portion first
and then the right portion is done in the same
manner. A line parallel to line AB is establihed
at a distance ] to the left along the bottom of

the time slab. This sliding line is divided by nj

nodes where

nj=n{—N (14)

with N equal to a small integer(usually in the
range 2 to 4) so that the length of the sides of
the elements along this line I are larger than |,

by a ratio

d=l, /1, (15)
=n} /(n}—~N)

This ratio used to expand the layers of
elements that are parallel to the line AB. This
process continues with each layer being wider
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Fig. 1 Meshing Domain

and containing fewer elements than the first
layer until the sliding line intersects the left
side of the time slab instead of the top. This
leaves either a triangular or trapezoidal region
that 1s filled with elements of approximately
equal size, This general procedure is repeated
in the region to the right of line AB to com-
plete the triangular mesh of elements for the
time slab, As the parallel layers approach the
ends of the time slab several special cases can
be encountered. Special coding has been devel-
oped to avoid elements with unfavorable as-
pect ratios or angles that would cause ill-con-
ditioning in the resulting element matrices.

The accuracy of the solution is significantly
affected by the mesh of elements. A good
coarse mesh can be produce better numerical
results than a finer mesh of ill shaped
elements. Two important geometric paramters
of a two-dimensional element are the aspect
ratio and the largest angle between sides. The
aspect ratio is the ratio of the maximum di-
mension to the minimum dimension of an el-
ement. Elements with aspect ratios less than 3
to 1 are known to give good results{8]. If the
largest angle between sides to close to 180°,
the numerical accuracy deteriorates, Ideally,
the interior angles at all vertices in an element
will be in the range of 30° to 120°.



3.1 Procedure for the Automatic Time Step
Control in Space and Time

The mesh in the x-t space will feature gen-
eral triangular elements and thus the mesh
will have non-uniform time steps at each pos-
ition. The time steps can, in general, will be
different for each position along the x-axis. In
the case of a moving source(front) in time
with a known direction, the grid will be re-
fined locally along the direction of the front to
better fit the solution. If there is no infor-
mation about the direction, maximum
gradients of the solution obtained from the
each iteration are used to decide the direction.
The procedure for the automatic time step
control in space and time can be divided into

five basic steps.

A. Starter time-slab(S.T.S)

Initially, a relatively small time step is used
to define a starter time slab in which the
elements are just uniform rectangular element
in space and time, The results of calculating
the solution for this starter time slab are used
to set slope of the principal line.

B. Locate the point of maximum gradient u
on top of S.T.S.

In this step which involves using the results
of the first step, the maximum gradients is
obtained from the gradient of the solution.
Equation(13) is used for the solution gradient
calculation,

C. Form the first time-slab with an
unstructured grid about the front as the
principal line.

On the second time-slab with a relatively

large time step, we generate a finite element
triangulation as described in Section 2. The
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small time step is imposed at the position
where the steep gradient of the solution
exists, and the large time steps are used in
those parts where the gradients of the solution
is likely to the small so that linear variation
will reasonably approximate the time step dis-
tribution between the positions. This will allow
time steps in regions of large gradient as is
normal with only spatial meshes where fine
meshes are used in areas of large space
gradients.

D. Solve for u at t=AT.

The old mesh nodes on the upper boundary
corresponding to the previous step must be
used as mesh nodes for the lower boundary of
the new time-slab domain. As an initial sol-
ution for the linear iterations on each time slab
we have used the same initial solution for the
first time slab with the Dirichlet boundary
condition given by the solution on the previous
time slab superposed on upper boundary,
Therefore, these discrete solutions on the up-
per boundary will be interpolated linearly and
will be used as Dirichlet boundary conditions
for next time step.

E. Locate the point of maximum gradient u

which gives a new slope to the front.

The point of the maximurn gradient is selec-
ted at the upper boundary. It gives a new di-
rection to the front, Generally this direction is
not identical with that of previous direction of
the front,

3.2 Demonstration of Adaptive Mesh Gener-
ation

To illustrate the ability of the mesh to adapt

to a2 moving front, consider the case when the
heat source moves with a velocity as specified
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Fig. 2 Velocity history of moving source

in Fig. 2.

This problem shows the mesh refinement tech-
nique in the case where the refinement differs
from one time-slab to the next. Fig. 3 shows
the mesh that was generated for seven
time-slab of At=1.0 second. The moving
source is captured inside the fine mesh of
elements which are generated along the front,
The total number of grid points required (cor-
responding to time from t=0.1 to t=7.1) for
this computation would be 4105 which i1s about
25% of the number of nodes if a uniform re-
finement would be used and all elements were
small enough to adequately model the large
spatial and temporal gradients along the front.
These results show the adaptive mesh
generators capability to produce a efficient
mesh for moving front boundary value
problems.

4. Problem of a Moving Source

We shall consider the non-stationary tem-
perature field produced in a finite bar whose
material i1s steel. The lateral surface of the
bar will be thermally insulated. There is a heat
source 1n a zone of length AL of the bar which
generates heat at a rate given by f, This
heated zone starts from the right end of the
bar and begins to move toward the left at a
constant axial velocity v along the bar, Before
studying the numerical results obtained using
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Fig. 3 Finite element mesh of overail time-siab : 4105
nodes, 7732 elements

the space-time finite element formulations, it
Is instructive to look at the governing equation
of the heat conduction problem when the heat
source 15 moving. The problem is characterized
by

VA
pC ﬂ‘-w%:f(x_t) (16)

The inmitial and boundary conditions are given
by, respectively,

23| Eds =2



u(x,0)=uy,
_.ou =
Ko (0,t) dy (17)

- K%’(L,t):h()< U _Ug@)

The moving heat source is illustrated in Fig. 4.
Using unit Heaviside's function n(x), we can
express the heat source as

f(x.t)=f[n(x—L+vt) —p(x—L+vt+AL)]
(18)
where f is a strength of source and

1 for x>0

-
nix 0 for x < 0
Then

0 for x<L—vt;
f(x,t)==¢f, for L—vt<x<L~vt+AL: (19)

1 for L—vt+AL<x;

q(!.l)‘

Fig. 4 Rectangular-shaped heat source of width AL moving
at a constant velocity v

This is a linear problem for which there
exists an analytical solution in series form.
The series solution for temperature u(x,t) has
been der:ved in the appendix. The following
gives the dimensions and material properties
used to obtain both the series and Galerkin
time-discontinuous numerical results presented

later.

X5 3 35 19939.

¥ Imitial condition : u(x,t==0)=50C

% Bulk fluid temperature : u=50C

% Density : p=7875 kg /m?

% Conductivity : k==144.5 cal /m - secC

* Time step of time slabs : At=:1.0 sec

* Length of source : AL=0.02 m

% Velocity of source : v==0.2 m /sec

% Heat flux : g==0 cal /sec - m?

¥ Heat coefficient : h==14500 cal /m? -
secC

418 see

pRT TP
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Fig. 5 Space-time finite element mesh
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Fig. 6 Comparison of temperature distribution at t=1.10
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Fig. 7 Comparison of temperature distribution at t=4.10
sec

% Specific heat : ¢,=103 cal /kgT

% Source intensity : f=2.4x10% cal /m® - sec
¥ Length of bar : L=1.0 m

¥ Space step for first step : Ax=0.01lm

% Time step for S.T.S : At=0.1/sec

5. Discussion and Conclusion

The solution of this problem is carried out
with a starter time slab with At==0.1 second
and then four time slabs At=1.0 second. The
space-time finite element mesh for the four
large time slabs is shown in Fig. 5. The
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time-discontinuous Galerkin finite element pro-
duce temperature distribution at the end of
each time slab, These results are plotted in
Fig. 6 and 7 respectively. Also shown in these
figures are temperature distributions
calculated from the series solution,

The numerical results from the time-dis-
continuous Galerkin finite element method
generally agree with the series solution as
shown Fig. 6 and 7. At the top of a time slab
there are 16 nodes. This indicates the level of
spatial discretization. In comparison, the series
solution required 200 terms to produce these
results. Thus the level of discretization in the
finite element method is significantly less. Be-
cause of this the sharp rise of temperature in
the finite element results induces a fairly high
level of oscillation (about 7%). This oscillation
is also evidenced in the oscillation in the re-
gion to the left of the front(forerunners) and
behind the front(tails). Both forerunners and
tails tend to oscillate hard when a low level of
discretization is used. If series solution had in-
cluded 15~20 terms then significant oscil-
lation, forerunners, and tails would have been
present in the series solution. These results
suggest that even finer elements are needed to
smooth out the oscillation of the finite element
solution. Indeed, if more element were used
the finite element results would improve. The
point of these numerical results is to establish
that the developed adaptive mesh generation
technique will efficiently treat moving front
problems that occur in many engineering
situations.

Numerical results have shown that the
adapti\}e gridding scheme is effective in
localizing oscillations due to the sharp
gradients or discontinuities in the solution. In
this method, we utilize the efficiency of finite
elements by choosing a finite element mesh in

23| E&te =2



the space-time domain where the finite el-
ement mesh has been adjusted to steep
gradients of the solution both with respect to
the space and the time variables. In this way
we solved all the difficulties with the classical
approach. The gridding is employed in con-
junction with a triangular finite element
discretization in two dimensions. The grid is
adapted at every n time step, depending on
the gradient computed. The guidelines for grid
optimization suggested here appear in a form
that is attractive for computations and can
lead to good improvements in the quality of
the finite element solution with relatively
small effort. Numerical examples taken from
practical moving source problems indicate that
with the present approach saving factors in
the both CPU and storage requirements of
more than an order of magnitude as compared
to uniform refinement are attainable, without
deteriorating the accuracy of the solution. The
space-time finite element method shows con-
siderable potential as an approach to solve the
problems. As a example of application of this
problem for the concrete, the front of phase
change can be considered as a good moving
heat source when the concrete is curing. When
the concrete is drying in common temperature,
the hydraulic heat occuring due to the change
of condition from liquid to solid is moving as
time ellapse.
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