• Title/Summary/Keyword: 유한요소정식화

Search Result 214, Processing Time 0.024 seconds

Stress Intensity Factor Calculation Using the Hybrid Formulation of Boundary and Finite Element Method (1st Report) (경계요소-유한요소 혼합법에 의한 균열선단의 응력강도계수 계산 (제1보))

  • In-Sik Nho;Chae-Whan Rim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.38-45
    • /
    • 1998
  • It is a tedious and excessive time consuming process to model the local area of crack tip part of structures in calculation of stress intensity factors by FEM. So, in this paper, the hybrid method of FEM and BEM approach was formulated to overcome this type of problems. The multi-domained BEM was adopted to simplify the modelling process of complex geometry and singularity characteristics of crack tip part and the ordinary FEM modelling was used in the rest part. The example calculations shows very good results compared with analytic solutions and other numerical method.

  • PDF

A Comparative Study on Formulation of Three-Dimensional Elastic-Plastic Finite Deformation Analysis for Prediction Large Deflection (강부재의 대변형 예측을 위한 3차원 탄소성 유한변위해석의 정식화에 대한 비교연구)

  • Jang, Gab-Chul;Chang, Kyong-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.53-61
    • /
    • 2006
  • In th is paper, to predicting the large deformation and cyclic plastic behavior of steel members under loading, 3-Dimensional elastic-plastic FE analysis method is developed by using finite deformation theory and proposed cyclic plasticity model. finite deformation theory, described the large deformation, is formulated by using Updated-lagrangian formulation and Green's strain tensor, Jaumann's derivative of Kirchoff stress. Also, cyclic plasticity model proposed by author is applied to developed analysis method. To verification of developed analysis method, analysis result of steel plate specimen compare to the analysis result using infinitesimal deformation theory and test result. Also, load-displacement and deflection shape, analysis result of pipe-section steel column, compare to test result. The good agreement between analysis result and experiment result shown that developed 3-dimensional finite element analysis can be predict the large deformation and cyclic plastic behavior of steel members.

  • PDF

Analysis Method for Multi-Flexible-Body Dynamics Solver in RecurDyn (RecurDyn 솔버에 적용되어 있는 유연 다물체 동역학에 대한 해석기술)

  • Choi, Juhwan;Choi, Jin Hwan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.107-115
    • /
    • 2015
  • The analysis of multi-flexible-body dynamics (MFBD) has been an important issue in the area of the computational dynamics. This technique has been developed and improved in RecurDyn solver. This paper reviews the formulation which is applied in the RecurDyn solver. Basically, in order to solve the multi-flexible-body dynamics problem, an incremental finite element formulation using a corotational procedure is used. In particular, in order to solve the rigid and flexible bodies together, a constraint equation between a rigid body and a flexible body is applied, in which a virtual body and a flexible body joint are introduced.

Implicit Stress Integration of the Generalized Isotropic Hardening Constitutive Model : 1. Formulation (일반 등방경화 구성관계에 대한 내재적인 음력적분 : 1. 정식화)

  • 오세붕;이승래
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.145-156
    • /
    • 1996
  • An implicit stress integration algorithm was formulated for implementing an aiusotorpic hardening constitutive model which has been based op the generalized isotropic hardening rule in nonlinear finite element analysis technique. the rate form of stress tensor was implicitly integrated using the generalized trapezoidal rule and the tangent stress-strain modulus was evaluated consistently with the nonlinear solution technique. As a result, it has been found that the nonlinear analysis with the anisotropic hardening constitutive model might be performed accurately and efficiently.

  • PDF

Nonlinear Analysis of FRP Strengthened Reinforced Concrete Columns by Force-Based Finite Element Model (하중기반 유한요소모델에 의한 FRP 보강 철근콘크리트 기둥의 비선형 해석)

  • Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.529-537
    • /
    • 2013
  • The aim of the current study is to develop a nonlinear isoparametric layered frame finite element (FE) analysis of FRP strengthened reinforced concrete (RC) beam or column members by a force-based FE formulation. In sections, concrete is modeled in the triaxial stress-strain relationship state and the FRP sheet is modeled as layered composite materials in two-dimension. The element stiffness matrix derived by the force-based FE has the force-interpolation functions without assuming the displacement shape functions. A lateral load test of RC column strengthened by GFRP sheets was analyzed by the developed force-based FE model. From comparative studies of the experimental and analysis results, it was shown to compare with the stiffness FE method that the force-based FE analysis could give more accurate predictions in the overall lateral load-deflection response as well as in nonlinear deformations and damages in the column plastic hinge region.

An Application of Space and Time Finite Element Method for Two-Dimensional Transient Vibration (2차원 동적 진동문제의 공간-시간 유한요소법 적용)

  • Kim, Chi-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.143-149
    • /
    • 2006
  • This paper deals with the space-time finite element analysis of two-dimensional vibration problem with a single variable. The method of space-time finite elements enables the simpler solution than the usual finite element analysis with discretization in space only. We present a discretization technique in which finite element approximations are used in time and space simultaneously for a relatively large time period. The weighted residual process is used to formulate a finite element method for a space-time domain. A stability problem is described and some investigations for chosen type of rectangular space-time finite elements are carried out. Instability is caused by a too large time step of successive time steps in the traditional time-dependent problems. It has been shown that the numerical stability of time-stepping on the larger time steps is quite good. The unstructured space-time finite element not only overcomes the shortcomings of the stability in the traditional numerical methods, but it is also endowed with the features of an effective computational technique. Some numerical examples have been presented to illustrate the efficiency of the described method.

Thermomechanical Contact Analysis by Subdomain/Interface Finite Element Method (유한요소 부영역 결합법을 이용한 열기계학적 접촉 해석)

  • Shin, Eui-Sup;Jin, Ji-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.7-14
    • /
    • 2005
  • A subdomain-interface finite element method is suggested to solve a class of fully- coupled thermomechanical problems with contact boundaries. The penalty method is used for connecting subdomains that satisfy interface compatibility conditions. As a result, effective stiffness matrices are always positive definite, and computational efficiency can be improved to a considerable degree. Moreover, any complex-shaped domain can be divided into independently modeled subdomains without considering the conformity of meshes on interfaces. Using a computer code based on the present method, these advantageous features are shown through a set of numerical studies.

Development of Aerodynamic Thermal Load Element for Structural Design of Hypersonic Vehicle (극초음속 비행체의 구조설계를 위한 공력 열하중 요소 개발)

  • Kang, Yeon Cheol;Kim, Gyu Bin;Kim, Jeong Ho;Cho, Jin Yeon;Kim, Heon Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.892-901
    • /
    • 2018
  • An efficient aerodynamic thermal load element is developed to reflect the effect of coupled aero-thermo-elastic behaviors in the early design stage of hypersonic vehicle. To this aim, semi-analytic relationships depending on structural deformation are adopted for pressure and thermal load, and the element is formulated based on the relations. The proposed element is implemented in the form of ABAQUS user subroutine, and coupled finite element analysis is carried out to investigate the aero-thermo-elastic behaviors of control surface of hypersonic vehicle. Through the analysis, usefulness of the proposed aerodynamic thermal load element is identified.

A Nonlinear Finite Element Formulation for Very Large Deformation based on Updated Material Reference Frame (변화되는 재료의 기준 물성치에 근거한 매우 큰 변화에 대한 비선형 유한요소의 정식화)

  • Yun, Young Muk;Park, Moon Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.25-37
    • /
    • 1992
  • A nonlinear finite element formulation which has the capability of handling very large geometrical changes is presented. The formulation is based on an updated material reference frame and hence true stress-strain test can be directly applied to properly characterize properties of materials which are subjected to very large deformation. For the large deformation, a consistent formulation based on the continuum mechanics approach is derived. The kinematics is referred to an updated material frame. Body equilibrium is also established in an updated geometry and the second Piola-Kirchhoff stress and the updated Lagrangian strain tensor are used in the formulation. Numerical examples for very large deformation of framed structures and plane solids are analyzed for verification purposes. The numerical solutions are obtained by an incremental numerical procedure. The importance of handing material properties properly is also demonstrated.

  • PDF

A Study on Generalization of Cyclic Plasticity Model and Application of 3-Dimensional Elastic-Plastic FEM of SM570 (SM570강재의 반복소성모델의 정식화 및 3차원 탄소성 유한요소적용에 관한 연구)

  • 장경호;장갑철;이은택
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.59-65
    • /
    • 2004
  • Recently, as steel structures become higher and more long-spanned, application of high strength steel. SM570, is considered, For accurate seismic design, seismic analysis of steel structures needs a constitutive equation describing the characteristic of steel materials under non-proportional cyclic loading, While the use of SM570 material is much increased these days, research for description and generalization of cyclic plasticity behavior are insufficient, In this study, a cyclic plasticity model is proposed by results of material tests, i.e, monotonic and low cycle tests, Proposed cyclic plasticity model is applied to 3-Dimensional FE program and we carried out seismic analysis of pipe-section steel pier using SM570, Comparison between experiment and analysis results shows that the proposed constitutive equation is able to describe exactly the complicated plastic behavior of steel structure using SM570.